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I. INTRODUCTION 

In recent years the many physical and chemical processes involved in steady- 
state flame propagation have been recognized. This does not mean that the 
problem of describing a flame has been solved, for major difficulties still remain. 
The difficulties are of two kinds: ( I )  our ignorance of the details of the chemical 
processes and (2)  our inability t o  handle satisfactorily the complex mathematical 
equations which are required to describe the system. A variety of methods of 
attack have been developed, and it is the purpose of this review to delineate 
the methods which are aimed a t  solving the mathematical problem. 

1 This research xas conducted under the auspices of Project Squid, jointly sponsored by 
the Office of Naval Research and the Office of Air Research under contract N6-ori-105, 
T.O. 111. I t s  publication has been authorized by Mark M. Mills, Technical Director of 
Project Squid, Princeton, Kew Jersey. 

2 Present address : hrmour Research Foundation, Technology Center, Chicago, Illinois. 
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A perspective of the field is possible only with recognition of the numerous 
assumptions and approximations found in the various theories. The plan of this 
review is to state in Section I1 the fundamental laws which should form the 
basis for flame propagation theory and then to outline the approximations used 
by various authors for the purpose of obtaining a mathematical solution. In  
Section I11 the problem is considered from the point of view of mathematics, 
in order to understand the mathematical problem involved. On the basis of the 
major assumptions the theories are divided into three groups-comprehensive, 
thermal, and diffusional-which are discussed in Sections IV, V, and VI. In 
these sections consideration is given to the theories from the first proposed in 
1881 to those recently advanced. 

When possible, the notation of the individual author has been followed. How- 
ever, for the sake of clarity and because in some instances notation varies from 
paper to paper of a single author, certain changes in the original notation have 
been made. The following terms are used consistently throughout the review: 

t = time coordinate, 
x = space coordinate, 
v = velocity of gases relative to the flame front (except in Section II), 
p = density, 
7 = specific volume, 
p = pressure, 
T = temperature, 

M = mass rate of flow (mZ-'t-'), 
X = heat conductivity (except in Sections IV,A and VI,B), 

c, = heat capacity a t  constant pressure, 
c,, = heat capacity a t  constant volume, 
p = coefficient of viscosity (except in Section VI,E), 
D = diffusion coefficient for a binary mixture, and 
R = gas constant. 

The subscripts 0 and 1 indicate conditions a t  the cold and hot boundaries of 
t,he flame, respectively. The subscript m indicates a mean value. 

11. GENERAL EQUATIONS AND SIMPLIFYING ASSUMPTIONS 

x, y, z = space coordinates, 
u, v, w = components of velocity in x, y, z directions, respectively, 

q = 4 2  + v 2  + w2, 
e = specific internal energy, 
i = specific enthalpy, 
I = total enthalpy, including heat of formation, 
ni = concentration of the ith component, 
Vi = diffusion velocity of the ith component, 
E = activation energy, and 
R' = gas constant divided by effective molecular weight of gas. 

The solution of the problem of steady-state flame propagation requires con- 
tributions from the fields of fluid dynamics, chemistry, and mathematics. Inas- 
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much as flame propagation may always be interpreted as chemical reaction in 
a flowing gas, the basic equations of fluid dynamics must be used for a descrip- 
tion of the system. The problem differs from that of ordinary compressible flow, 
however, because of the reaction processes occurring in the system, and these 
processes must be investigated and described by the methods of chemistry. 
Finally, since the fluid dynamical and chemical processes require mathematical 
description, usually in terms of a system of differential equations, contributions 
from the field of mathematics are necessary for the solution. 

A .  The basic equations of fluid dynamics and the generalizations and simplifiations 
required for their use in theories of one-dimensional, steady-state, 

non-viscous flame propagation 
The analysis of the phenomenon of flame propagation is conveniently begun 

with a consideration of the fluid dynamical differential equations required for 
the description of the system (24, 73). Except a t  discontinuities the classical 
equations of fluid dynamics govern the behavior of the motion of a medium in 
which the gradients of velocity and temperature are small, so that the forces in 
the gas are due entirely to pressure and not a t  all to viscosity and thermal con- 
duction. This means that there is no friction and the entropy of the element re- 
mains unchanged. External forces such as gravity are not taken into account, 
nor is energy loss by radiation. The equations express the principle of conserva- 
tion of mass, Newton’s law of conservation of momentum, the principle of con- 
servation of energy, and the particular form of the equation of state. They are 
expressed in rectangular coijrdinates as follows, where p t  = dp/dt, p. = du/dx, 
etc. : 

(mass) (1.01) P f  + ( P d z  + ( P d u  + ( P W L  = 0 

1 
P 

ut + uu, + vu, + wuz + - p ,  = O (momentum) (1.02) 

ut + uvz + vu, -k wv, + 1 p,  = 0 
P 

1 
P 

Wt + uw. + vw, + wwz + - pz = 0 

M % P 2  + e>lt + [p448q2 + ill= + M % q 2  + 91, + [PW(46P2 + ill‘ = 0 

(energy) (1.03) 

p~ = R’T (equation of state for ideal gas) (1.04) 

The theories of flame propagation require the following modifications and 
simplifications of equations 1.01-1.03. The modifications are necessary because 
of the character of burning; the simplifications are made to facilitate mathemati- 
cal solution. 

(a )  The problem is assumed to be one-dimensional, so that all quantities de- 
pend, in addition to the time t ,  only on one space coordinate x, so that the com- 
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ponents v and w of the velocity vanish. This assumption enormously simplifies 
the mathematical problem. 

( b )  A steady-state flow is assumed, so that all quantities are independent of 
t ,  and the system of partial differential equations is reduced to a set of ordinary 
differential equations. This assumption eliminates the important class of prob- 
lems of combustion occurring in non-steady flow. 

(c) If velocity gradients exist, terms for the contribution from viscous friction 
must be included in equations 1.02-1.03 (27, 74). The theories of flame propaga- 
tion generally assume that the velocity gradients are small and may be neglected, 
and the viscosity term which remains even in the one-dimensional equations 
of momentum and energy is ignored. 

(d) The temperature gradient through the flame zone is large, so that a term 
providing for change in energy in an element of the gas because of heat conduc- 
tion must be included in equation 1.03. 

Equations 1.01-1.03 may now be modified according to modifications (a) to 
(d) above, giving the following one-dimensional steady-state equations which 
include the effects of viscosity and heat conduction : 

( P U L  = 0 (conservation of mass) (1.05) 

(PU2 + p - P U Z L  = 0 (conservation of momentum) (1.06) 

Ipu(Ku2 + e’) - puuZ - XT,], = 0 (conservation of energy) (1.07) 

(e )  The chemical nature of the gas changes across the flame zone. The first 
consequence of this is that energy is liberated, and the rate of heat liberation 
must be included in the energy equation (equation 1.07). 

The second consequence is that the concentration of each component of the 
gas becomes a variable of the problem and it is necessary to state equations of 
continuity for a certain number of the components. For the steady-state condi- 
tion, the equation of continuity is the mathematical statement that the rate of 
accumulation of a component in an element of gas is equal to zero. Each equa- 
tion of continuity contains three terms, which express the change in concentra- 
tion of the component because of (i) mass flow, (ii) diffusion, and (iii) chemical 
reaction. For a system of n components, the n equations of continuity, taken 
with the fact that mass is neither created nor destroyed in chemical reactions, 
imply the conservation of mass (51). It is not necessary to state n equations of 
continuity for a gas mixture containing n components. Following Hirschfelder 
and Curtiss (51, 52, 53) in their analysis of the number of equations required, 
one mites for the equation of continuity for the ith component 

d 
dx - [ni(v + Vi)] = Ki ( 1 .OS) 

where ni is the concentration of component i, v is the velocity of flow, Vi is the 
diffusion velocity of the ith component, and Ki is the rate of production by 
chemical reaction of the ith component. 
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Let Ji = ni(v + V i ) / M .  Then equation 1.08 can be written: 

(1.09) d J .  M 2 = Ki where i = 1,2,  . - s 
dx 

There are various relations among the Ki. Hence not all the Ji are independent. 
The number of linearly independent Ji (i.e., the number of equations of con- 
tinuity required) will be equal to s - g’, where g’ is the number of independent 
relations among the Ki. If there are g kinds of atoms present there are g relations 
of the form 

vik:K; = 0 where k = 1, 2, g (1.10) 
3 

where V;k is the number of atoms of the kth kind in a molecule of the ith kind. 
Equation 1.10 expresses the fact that atoms are conserved in a chemical reaction. 
Certain groups of atoms may go through the chemical reactions intact and should 
therefore be treated as single atoms. The number of effective atoms in a system 
is therefore r 5 g. The number of independent equations 1.10, g’, is the number 
of independent components in the sense of the phase rule: g’ = r - s + 2. 

However, if the chemical kinetics of the system involves 1 chemical reactions 
and their reverse reactions, it is found that there are a t  most I linearly inde- 
pendent K;. This is seen by writing for the chemical reactions 

Pd11 + rB2j[2] + * .  * P*j[~l * ~j111 + d 2 1  + ‘ * + 7 1 r j [ ~ l  (1.11) 

pij  and vi j  are constants which are either positive integers or zero. [i] indicates 
a molecule of i. The subscript j indicates the jth chemical react,ion. It can be 
shown that Ki can be written 

2 

Ki = C (vij - Pij)rj (1.12) 
j- 1 

where 
= jj(T)yfli&i . . . y{*i 

r j  being an expression for the rate of the jth reaction. Thus any Ki is determined 
by 1 reactions. 

The result of this analysis is that t’he actual number of linearly independent 
Ji is either I or (s - g’), whichever is smaller. 

The third consequence of the changing chemical composition across the flame 
zone is that since concentration gradients exist across the flame, the effect of 
diffusion should be included in the equations of continuity and energy. If, as 
in many theories, all molecules are assumed to have the same size and weight, 
it is not necessary to include diffusion in the energy equation. 

B. Simplifying assumptions used to effect solutions of the equations for 
one-dimensional, steady-state, non-viscous jlame propagation 

The theories of flame propagation discussed in this paper are concerned with 
the flow problem as stated in equations 1.01-1.04, but modified according to the 
generalizations and simplifications (a) to (e) above. However, certain difficulties 
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are encountered upon attempting to use the equations thus modified, and as a 
result various further approximations are introduced. The types of assumptions 
or approximations used distinguish the theori-. 

The difficulties occur in the problem because the reaction rate is a function of 
the temperature and of the concentrations of the components taking part in the 
reaction. The majority of combustion processes consist of a set of reactions pro- 
ceeding simultaneously, and include not only the molecules of the original com- 
ponents but intermediate particles. It is therefore necessary to have a knowledge 
of all reactions occurring in the flame and of the dependence of their rates on the 
temperature and on the concentration of the reacting particles. Studies of chem- 
ical kinetics have supplied such complete data in only a few instances. Further- 
more, it is not certain that it is valid to use for reaction rates in a flame the rates 
as measured for the same conditions of temperature and composition in a static 
system. It may be that in a flame the successive reactions occur so rapidly that 
the internal degrees of freedom of the intermediate species do not have time to 
adjust to the local temperature (52, 53). 

The expression for dependence of rate on temperature and concentration 
varies according to the individual reaction. Therefore the differential equations 
which include the rate expression become dependent on the special form of the 
equation for the reaction velocity and it is not possible to expect from the solution 
of the differential equations universal expressions for flame characteristics, since 
they will vary according to the reaction mechanism. 

In general, the rate expression for a single reaction has the form 
B - W E T  81 B a  .. , le nl n2 

where B1 is a constant and the pi represent the number of molecules of species i 
involved in the reaction. Furthermore, the heat conductivity, the heat capacity, 
and the diffusion coefficient are functions of temperature and concentration. Con- 
sequently the differential equations are non-linear and an exact analytical solution 
presents great difficulties; hence further simplifying assumptions are required. 

Of the further simplifications used, some are of such a nature that one aspect 
of the mechanism of flame propagation is emphasized to the relative exclusion 
of another. In fact, current- theories can be classed conveniently and more or 
less sharply according to which of the assumptions listed in the following para- 
graphs are used. 

(f) Generally the limiting case of a constant-pressure flame is assumed. In 
all theories discussed in this paper it is assumed that u and p ,  are small and that 
the orders of magnitude of u, u2, puuz, and puz with respect to the other terms are 
such that certain terms may be neglected in equations 1.06-1.07. i is replaced by 
I to indicate that, since heat is liberated, the enthalpy term must include the 
heat of formation. Then the momentum and energy equations for a system in 
which transfer of energy by diffusional processes is not considered are written : 

p = constant (momentum) (1.13) 

(puI - AT,), = 0 (energy) (1.14) 
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Substitution of typical values into equations 1.06 and 1.07 will show that this 
assumption is not unreasonable (12, 13). 

(9) A reaction rate law of a relatively simple model, such as the unimolecular 
or bimolecular rate law, may be used, or a single gross reaction may be substi- 
tuted for the actual sequence of intermediate reactions. 

(h) From kinetic theory, the expression Dp = X/cp, relating thermal conductiv- 
ity, diffusion coefficient, density, and specific heat, is known to be valid for gas 
mixtures containing molecules of equal size and weight. This relation, only ap- 
proximately true when the molecules are not equal, is sometimes employed, with 
the result that the equations of continuity and energy assume the same form. 
The mathematical problem is thus reduced to one of solving a single type of 
differential equation (97, 114, 115, 116). 

(i) There are two limiting mechanisms for flame propagation (83). Thermal 
theories hold that the process of heat conduction is the most important physical 
process involved in the transfer of the reaction zone from one layer of gas to the 
next. Diffusion processes are not considered, and the concentration of a given 
component a t  a point is assumed to be governed only by flow and reaction 
processes. 

Very often thermal theories use the concept of ignition temperature. It is as- 
sumed that heat produced by chemical reaction is conducted to the unburned 
gas so that the temperature is raised to the ignition temperature, Ti, whereupon 
the gas begins to react. The zone preceding the point at which the ignition 
temperature is reached is called the preheating zone, and the zone following the 
ignition point is called the reaction zone. The early theories (30, 33, 66, 67, 85, 
90) regarded the ignition temperature as a characteristic physical constant of 
the initial gas mixture. It is now known to depend upon the experimental condi- 
tions under which the heat is liberated. The reaction rate was assumed to be dis- 
continuous at the ignition point, jumping from zero in the preheating zone to a 
finite value in the reaction zone. Moreover, the reaction rate was often assumed 
to maintain a constant value in the reaction zone as the temperature increased 
from Ti  to  TI. In  view of the present conception of the dependence of reaction 
rate on temperature, these ideas are a t  best approximations to actual conditions. 
Actually, the rate is not an explicit function of t or x, and its dependence upon 
these variables cannot be obtained before integrating the equations. Conse- 
quently, erroneous or inadequate expressions were introduced for the reaction 
rate. 

The demarcation of the flame zone into two zones is often useful as an ap- 
proximation for the modern thermal theories (5, 6, 8, 9, 10, 32, 54), as well as 
for theories which emphasize diffusion processes (42, 43, 97, 115, 116). The com- 
bustion process is considered to have an induction period, during which the initial 
mixture must be prepared for ignition, not only by an increase to the required 
temperature but by the accumulation, through diffusion from burning layers or 
the establishment of equilibrium with the initial components, of active inter- 
mediate particles. During the induction period it is assumed that the chemical 
decomposition is small, say less than 1 per cent. At the point of ignition the con- 
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centrations of the active chain carriers and the reaction velocities of the inter- 
mediate reactions have become so large that the combustion reaction suddenly 
accelerates. At this point the reaction is assumed to begin. The modern concept 
does not regard the ignition temperature as a characteristic physical constant 
for a mixture. Neither is it expected that the ignition temperatures occurring in 
a flame should agree with those obtained for the same initial mixtures by other 
methods, such as adiabatic compression of the mixture (61). In those methods 
the intermediate products necessary for ignition must be formed solely by thermal 
processes. In flames more favorable conditions prevail, since the intermediate 
particles are supplied also by diffusion from the reaction zone. 

Some modern thermal theories avoid an explicit statement of the expression 
for the reaction rate by substituting an experimentally determined value for 
the thickness of the reaction zone (32, 42). 

( j )  The other limiting mechanism holds that the flame velocity is determined 
principally by diffusional processes. It is postulated that active atoms and 
radicals produced by dissociation in the hot burned gases and by chain branching 
diffuse into the fresh gas and cause it to  react explosively (4, 9, 42, 43, 104, 105, 
106, 107). The diffusional theories generally neglect the energy equation and use 
instead an assumed function, frequently an average value, for the temperature. 

Diffusional treatments of flame propagation may be classified according to the 
treatment of the role of the active particles which participate in the elementary 
reactions of the combustion process. The particles are generally chain carriers, 
and this fact further complicates the problem, with the result that such simplify- 
ing assumptions as the following are made: 

(k) If a chain reaction without branching is assumed to occur, two methods 
of treatment have been used: 

(i) The instantaneous concentration of the active particles is assumed to 
be determined everywhere in the flame by the equilibrium of the active 
particles with the initial reacting substances (76). The same treatment 
may be used when the concentration is determined by the quasi- 
stationary methods of Bodenstein, the necessary condition for the 
validity of this treatment being the short lifetime of the active particles, 
so that the stationary concentrations are established rapidly in com- 
parison with the velocity of the reaction (115). 

(ii) Equilibrium concentrations of active particles are assumed at  only one 
point in the flame zone-for instance, at  the hot boundary where the 
reaction reaches completion-and the particles diffuse from that point 
into the colder layers of gas (4, 104, 105, 106, 107). In support of this 
viewpoint an estimate by Jost and von Muffling (56, 58) shows that 
more than ten times as many particles can reach the colder layers of 
the flame zone by diffusion as would be there in equilibrium. Gaydon 
and Wolfhard (41) obtained evidence from absorption spectra that in 
low-pressure flames the concentration of OH radicals just in front of the 
reaction zone is higher than that calculated thermally. 

(1) If chain branching is assumed to occur, the velocity of the chain-breaking 
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reaction is taken to be the limiting factor which determines the flame velocity 
(108, 109). When there is an accumulation of active particles which are connected 
with the initial reacting substances not by stoichiometric but by kinetic equa- 
tions, it is necessary to take account of the recombination of the centers. In order 
that it may be possible to speak of a chain-branching reaction in which gradual 
autoacceleration of the reaction occurs, it is necessary that the recombination 
be small in comparison with the branching when the branching has reached, say, 
70 per cent of completion. Otherwise the branching and recombination determine 
a quasi-s'tationary concentration of the active centers and one has instead the 
type described in (k) (i) above (1 15). 

(m) The heat capacity, the coefficient of heat conductivity, and the diffu- 
sion coefficient are often assigned constant mean values. This is done for reasons 
of mathematical simplicity, but also because in many instances the exact be- 
havior of the coefficients X and D for multicomponent gas mixtures is not yet 
known. Current work on transport properties of multicomponent gas mixtures 
may provide accurate expressions for X and D (31, 81, 112). 

(n) Thermal diffusion, which is caused by the temperature gradient and by 
which molecules of the heavier gases diffuse in the direction of decreasing temper- 
ature and those of the lighter gases in the other direction, is neglected. 

(0) The gases are assumed to be ideal. 

C .  Boundary conditions; stability; classification of theories 

In  order to obtain a particular solution of a set of differential equations it is 
necessary to specify a single set of boundary conditions. The mathematical 
problem of determining the values of the dependent variables in a flame is, how- 
ever, an eigen-value problem, which requires an additional set of boundary con- 
ditions. Selection of appropriate boundary conditions, particularly a t  the cold 
boundary, is not necessarily simple. 

It is generally assumed that the fresh gas moves from - co to + CQ, with the 
change from fresh gas to burned gas occurring in a zone contained in this region. 
Usually pressure is assumed constant and the boundary conditions chosen are 
the values a t  the hot and cold boundaries of the variables temperature and con- 
centration and their derivatives with respect to x. The correctness of a theory is 
often tested by comparing the predicted value of the flame velocity with a meas- 
ured value. The flame velocity or normal burning velocity, vo, is defined as the 
linear velocity of displacement of the flame front with respect to the fresh gas 
entering the combustion zone, in a direction normal to the flame front. Detailed 
discussion of methods of measuring flame velocity may be found in the literature 
(1, 2, 3, 43, 59, 79, 98). 

The inlet or cold-boundary temperature and composition being known, by 
assuming thermodynamic equilibrium a t  the hot boundary and either adiabatic 
combustion or a known heat loss, it  is possible to compute the temperature and 
composition a t  the hot boundary. Thus the specification of the values of the vari- 
ables a t  the two boundaries is relatively simple. Furthermore, it is generally 
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agreed that temperature and concentration approach asymptotically the equili- 
brium values a t  the hot boundary; thus, dT/dx = 0 a t  x = w , 

Specification of the gradients a t  the cold boundary is more diffcult, and a variety 
of conditions are used. Expressions for chemical reaction rate of the form 
B1exp(-E/RT)n?'n!? do not vanish a t  T = To, so that, mathematically speak- 
ing, the gradients are finite, although in actuality no measurable reaction occurs. 
Some authors nevertheless take the gradients to be zero a t  x = - w and avoid 
this difficulty by neglecting the contribution to the reaction a t  the lower temper- 
atures. Others start the solution a t  a finite point and assign gradients a t  that 
point. 

It may be that the cold-boundary conditions are related to the stability of the 
steady state. Frequently a flame travelling down a tube changes from deflagra- 
tion to detonation, and conceivably this transition is brought about by an in- 
stability of the steady state (38, 53). According to Emmons, Harr, and Strong 
(38), changes in the temperature gradient a t  the cold boundary can result in 
a transition to detonation or extinction. Hirschfelder and Curtiss (51, 52, 53) 
suggest that the presence of a flame holder is necessary to establish a steady state. 
They define a mathematical flame holder which extracts an amount of heat pro- 
portional to the temperature gradient a t  that point. Lewis and von Elbe (77, 78) 
have discussed the means by which a two-dimensional flame is stabilized by such 
a solid object. Their argument is that when the flame is too close to the stabilizing 
body the flame loses thermal energy and chain carriers to the stabilizer, with the 
result that the flame velocity is lowered, the gas velocity is everywhere greater 
than the flame velocity, and the flame is driven back. If the flame is too far 
from the stabilizer, the flame velocity somewhere exceeds the gas velocity and 
the flame moves forward. In the equilibrium or stable position, a t  one point on 
the flame surface the gas velocity and flame velocity are equal, while everywhere 
else on the surface the gas velocity exceeds the flame velocity. 

No more consideration will be given to the question of stability in this paper, 
but it should be remembered that the proper choice of boundary conditions may 
be linked with the question of stability. 

The theories of steady-state flame propagation have been divided into three 
groups according to their major assumptions. Those classed as comprehensive 
theories have in common the fact that both heat conduction and diffusion proc- 
esses are considered, with various degrees of rigorousness, and an attempt is 
made to deduce a priori a complete description of a flame produced by a stated 
reaction or a stated class of reactions. Ideally, the solution of these equations 
provides expressions for the temperature, the pressure, the velocity, and the 
concentration of all components as a function of x. 

Thermal and diffusional theories emphasize, respectively, the heat conduction 
and the diffusion processes of the system, These theories often attempt not the 
a priori deduction of all properties, but the devising of a general expression for 
a particular property, usually the flame velocity. Frequently experimentally 
determined properties such as width of flame zone, induction period, or ignition 
temperature, or assumed properties such as a temperature, are introduced into 
the theory. 
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III. MATHEMATICAL CONSIDERATIONS (25,40) 
e = specific internal energy, 
g = energy of formation a t  absolute zero, 

E = e + g = total internal energy, 
i = specific enthalpy, 
I = i + g = total enthalpy, 
S = entropy, 
u = velocity of gases in x direction, 
U = velocity of reaction front, 
E = fraction of burned gas in the mixture, 

K = rate of reaction, and 
v = u - u .  

It has long been observed (18, 20, 34, 35, 84, 85) that under ordinary circum- 
stances the flame in a tube filled with combustible gas and ignited a t  one end 
propagates a t  a low velocity of a few meters per second. Under certain circum- 
stances this normal combustion process or dejlagration changes over to a process 
in which the flame front moves with a very high velocity, 2000 m. or more per 
second. This high velocity process is called detonation. A theoretical explanation 
based on hydrodynamic processes of these two types of propagation was pro- 
posed independently by Chapman (22) and Jouguet (64, 70). 

It is not the purpose of this paper to consider the process of detonation in 
detail, but since the explanations for the phenomena of detonation and deflagra- 
tion follow from the same mathematical reasoning, detonation will be included 
in the discussion. A detailed exposition of the mathematical theory of detonation 
and deflagration waves in gases has been given by Courant and Friedrichs (25, 
40), and their treatment will be followed here. 

It is assumed initially that the chemical reaction takes place instantaneously, 
that is, that there is a sharply defined front between fresh and burned gas. This 
is analogous to the transition of uncompressed to compressed gas across a shock 
front. The essential difference from a shock transition is that the chemical nature 
of the gas on one side of the front differs from that on the other; hence (1) the 
internal energy function e(7, p )  for the burned gas differs from that of the fresh 
gas, and (2)  the chemical reaction influences the energy balance. After discussing 
the theory on the basis of this assumption of a sharply defined front, the conse- 
quences of assuming that the reaction takes place gradually over a zone will be 
examined. 

The relations describing the transition from state 0 to state 1 correspond to 
the laws of conservation of mass, momentum, and energy. If the one-dimensional 
process is observed from a coordinate system moving with the front, the laws of 
conservation of mass and momentum are identical with those for shock fronts: 
namely, the jump conditions 

povo = PlVl  = M (2.01) 

(2.02) 

where M is the mass flux through the surface, and 

Po + P o d  = p1 + P d  
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The law of conservation of energy for the process is written 

E(O)(70,PO) + Po70 + $.id = E(1)(71,pl) + PI71 + $.id (2.03) 

where the total internal energy is assumed to be a known function E = E‘”(7,p) 
for the fresh gas and E = E‘”(7,p) for the burned gas. 

From the mechanical conditions (equations 2.01 and 2.01) the relation 

(2.04) 

is obtained. Equation 2.04 implies that the pressure and specific volume increase 
or decrease in opposite directions. From this equation it follows that two different 
types of processes are compatible with the conservation laws,-those in which 
both pressure and density increase, called detonations, and those in which both 
pressure and density decrease, called deflagrations. 

2 2  (PI - po)/(71 - 70) = -p2v2 = -povo 

Equation 2.02 may be written as 

(Pl - PO)/(Ul - %) = -povo = -Plvl (2.05) 

which shows that for detonations the velocity of the gas decreases when the re- 
action front sweeps over it and that for deflagrations the gas is accelerated away 
from the reaction front. 

Certain assumptions concerning the nature of the energy function E(r,p)  are 
made: namely, that the partial derivatives of E with respect to p and of I with 
respect to 7 are positive, that is, 

Ep > 0,  I ,  > 0 (2.06) 

A second assumption is that the relation 

d E  = de = - p d ~  + TdS (2.07) 

holds, an assumption which is valid if g is independent of p and 7. Finally, it is 
required that the process be exothermic, so that for the same pressure and density 
the total energy and enthalpy for the fresh gas are always greater than for the 
burned gas. 

The velocities may be eliminated from equations 2.01, 2.02, and 2.03 and the 
so-called Hugoniot relation obtained : 

(2.08) J W 7 1 , P l )  - E(O)(70,PO) = -45(71 - 70’o)(Pl + Po) 
It is useful to form the Hugoniot function, H ( ’ ) ( T , ~ ) ,  for the burned gas. 

H ( ” ( 7 , p )  = E‘”(7,p) - E(’ ) (~O,PO)  + $.i(7 - ~ o ) ( p  + PO) (2.09) 

Employing equation 2.09 in equation 2.08, the latter can be written in the form: 

H‘”(7,p) = E(o)(70,po) - E ‘ ” ( T O , ~ O )  (2.10) 

Suppose 7o and po are given. Then r1 and plwill satisfy equation 2.10 in all 
reaction processes compatible with the conservation laws given in equations 
2.01, 2.02, and 2.03. However, not all values of 7 and p satisfying equation 2.10 



THEORIES O F  STEADY-STATE FLAME PROPAGATION 375 

actually correspond to a reaction process compatible with equations 2.01, 2.02, 
and 2.03, inasmuch as the condition 

(PI - P o ) / ( T 1  - TO) < 0 (2.1 1) 

derived from equation 2.04, must be satisfied. A plot of points in a ( ~ , p )  plane 
which satisfy equations 2.10 and 2.11 is called the Hugoniot curve. Such a plot 
is shown in figure 1. 

The significance of the deflagration branch of the Hugoniot curve shown in 
figure 1 is now examined. Consider a straight line through the point (ro,po) and 
its intersection with the Hugoniot curve. If the slope of the ray ( p  - p o ) / ( ~  - TO) 

P 

CHAPMAN - JOUGUET DETONATION 

1 STRONG DEFLAGRATION 

T O  

I r 

FIG. 1. Hugoniot curve for detonations and deflagrations as given by Courant and 
Friedrichs (25). 

is a small negative number, it will intersect the deflagration branch near the 
point B, which corresponds to a constant-pressure deflagration. On decreasing 
the slope a second intersection will occur. It can be shown that not more than two 
intersections can occur. Deflagrations represented by first intersection points 
are called weak, and those represented by second intersection points are called 
strong. Weak and strong deflagrations are separated by the point C, the so-called 
Chapman-Jouguet, deflagration, a t  which the two points of intersection eventu- 
ally coalesce if the slope is decreased. Similarly, the point D is the Chapman- 
Jouguet detonation and separates the regions of strong and weak detonations. 
It can be shown that in a Chapman-Jouguet process the speed of the burned 
gas relative to the front is equal to the sound speed of the burned gas. Further- 
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more, for Chapman-Jouguet deflagrations the reaction front velocity vo and the 
entropy of the burned gas are relative maxima, and for Chapman-Jouguet 
detonations they are relative minima. 

It is seen that reaction processes are not determined by the conservation laws; 
that is, for a given T O  and po, a set of deflagrations are mathematically compatible 
with the laws of conservation across a discontinuity front. To determine a re- 
action process it is necessary to consider the internal mechanism. By this means 
it will be shown that strong deflagrations are not possible, and that weak defla- 
grations are possible only for a well-determined velocity vo. This velocity is de- 
termined by taking into account the transport properties of the gas. Courant 
and Friedrichs limit the determining property to heat conductivity, but in the 
general case diffusion must also be considered. Bearing this in mind, the analysis 
is continued as given by Courant and Friedrichs. 

Assume that the change of chemical composition takes place not instantane- 
ously but over a finite zone xo 5 x 5 21. The intermediate compositions are 
assumed to be mixtures of burned and unburned gas, where e and (1 - e) repre- 
sent, respectively, the fraction of burned and unburned gas. Assume that the 
total energy E(') of the mixture is the sum of the total energies for the burned 
and unburned gases in the mixtures for the same values of T and p :  

E"'(7,p) = (1 - e)E'O)(7,p) + &"'(T,p) (2.12) 

The equation is valid if the gases are ideal. 
The rate of reaction K is assumed to be positive and a function of T ,  p ,  and e: 

(2.13) de/dt = K(T,p,e) > 0 

A steady process has been assumed; hence 

vde/dx = K (2.14) 

The flow is from left to right, so that v > 0. Therefore 

de/dx > 0 (2.15) 

It is now argued that the conservation laws (equations 2.01, 2.02, and 2.03) 
hold throughout the process, the laws being written in the same way, with v,, 
p , ,  and r ,  replacing vl, pl, and rl, where the subscript e indicates the value of 
the quantities a t  the point xc where the mixture ratio has the value e. 

Relations analogous to equations 2.04 and 2.08 are obtained: 

( p .  - po) / ( re  - 7 0 )  = -M2 (2.16) 

and 

E ( t ' ( T € , p € )  - E'o'(TO,pO) = -%(re - ro)(pr + Po) (2.17) 

According to equation 2.16 the reaction is represented in the (7 ,~)  plane by a 
straight line of slope 

dpcldTc = (pt - pol/(., - 70) (2.18) 
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If we differentiate equation 2.17 and use equations 2.12,2.18, and 2.07, we obtain: 

(2.19) 

For E = 1, the right-hand side is positive, from equation 2.15 and the assumption 
that the reaction is exothermic, Le., that 

E(o)(rl,pl) > E(l)(T1,pl) 

dS/dr > 0 for e = 1 

For a deflagration dr,/dx > 0. Hence equation 2.19 implies 

(2.20) 

It is now shown that the inequality 2.20 excludes the possibility of strong 
deflagrations. Consider point C in figure 1, representing the Chapman-Jouguet 
reaction. For Chapman-Jouguet processes the equation 

dp/dT = (p - po)/(r - 70) (2.21) 

holds, in which the differentiation is along the Hugoniot curve. From equations 
2.09 and 2.07 one can derive the identity 

@"(~ ,p)  = TdS + M[(T - d d p  - (p - po)d~] (2.22) 

and using equation 2.21 in equation 2.22 one finds: 

d S  = 0 a t  points C and D (2.23) 

Next differentiate along the Hugoniot curve the relation 

2T dS/dT = (p - PO) - ( T  - T O )  dp/dT (2.24) 

obtained from equation 2.22. This gives 

2T d2S/dr2 = - ( r  - T O )  d2p/dr2 a t  C and D (2.25) 

Now any ray through (TO,PO) with a slope greater than that of the ray passing 

d2p/dr2 1 0 a t  C and D (2.26) 

with the differentiation again being taken along the Hugoniot curve. Since for 
a deflagration r > TO one finds from equation 2.25 

(2.27) 

The equality sign of equation 2.27 may now be excluded as follows: The equation 
of state may be written as a function of r and S ;  thus p = g(r,S). Differentiating 
along the Hugoniot curve gives 

dp/dr = + gs& (2.28) 

d2p/dr2 = g,, + g8S,, a t  C or D (2.29) 

since dS/dr = 0 a t  points C and D. 

through C intersects the Hugoniot curve in two points. Therefore 

d2S/dr2 5 0 a t  C, d2S/dr2 2 0 at D 

and a t  C and D, since S,  = 0, 
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Under the assumption that g,, > 0, equation 2.29 shows that p , ,  and X,, 
cannot vanish simultaneously a t  C. Equation 2.25 then indicates that they can- 
not vanish a t  all. Hence 

d2p/dr2 > 0 a t  C or D (2.30) 

2nd 

d2S/dr2 < 0 a t  C; d2S/dr2 > 0 a t  D (2.31) 

is 
C1 

From equation 2.31 one sees that equation 2.20 implies that the point (rl,pl) 
the first point of intersection of the ray through (r0,pO) with the Hugoniot 

irve for e = 1. Thus the process is a weak deflagration and strong deflagrations 
are impossible. Courant and Friedrichs show that the physical meaning of their 
argument is that a transition from (ro,p0) to the second point of intersection 
(rl,pl) on the Hugoniot curve for e = 1 is not possible unless the ray passes 
through a region corresponding to e > 1, and this would be meaningless. 

Finally, one wishes to determine if from a set of weak deflagrations one with 
a particular velocity only is possible. To do this the model of the reaction zone 
must be refined further. The preceding arguments assumed that no reaction 
occurs until the point x = xo is reached and that at  that point the reaction rate 
suddenly assumes a positive value. If one considers the actual process from the 
point of view of a thermal theory, as the authors do, a picture nearer reality is 
that the fresh gas is heated by conduction, and only when it has reached a suf- 
ficiently high temperature does the reaction rate assume a noticeable value. 
That weak deflagrations are indeed subjected to one additional condition which 
depends for a thermal theory essentially on the heat conductivity is illustrated 
by the following considerations: 

The differential equations for the one-dimensional steady-state burning in 
which there are only two components, reactant and product, and in which heat 
conductivity and viscosity but not diffusion are considered, may be written 

pv = M (2.32) 

pv2 -!r p - PVZ = P 

pv(%v2 + I"') - ~ V V ,  - AT, = Q 

(2.33) 

(2.34) 

ueZ = K(T,p,e) (2.35) 

where M ,  P,  and Q are constants. Equations 2.32, 2.33, and 2.34 are just the 
integrated forms of equations 1.05, 1.06, and 1.07, except that the total enthalpy 
I('), which includes the energy of formation and is dependent on E ,  replaces the 
enthalpy i of equation 1.07. Equation 2.35 is the same as equation 2.14. The gas 
is assumed to be ideal; hence T = pr/R'. 

If M ,  P,  and Q are known, equations 2.33, 2.34, and 2.35 are three differential 
equations of the first order for the variables v, T, and e. All other quantities can 
be written in terms of these variables. The boundary values v = VO, p = PO, 
p = po, and e = 0 for the fresh gas are prescribed a t  x = - QI ; in the same way 
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v = 2.1, p = PI, p = p l ,  and E = 1 for the burned gas are prescribed a t  1: = + so. 
A solution is sought over the whole range - so < x < + 00 which must approach 
1: = =t co in such a way that v,, T,, and E= approach zero. For this to be possible 
it is required that K vanish for e = 1 and for r = T O ,  p = pol c = 0. Then the 
constants M ,  P ,  and Q can be expressed in terms of the boundary conditions. 
Since it is required that M ,  P ,  and Q have the same values for state 0 and state 
1, three conditions are thereby imposed on the boundary conditions. 

Now consider a constant-pressure deflagration, so that equations 1.13 and 
1.14 replace equations 2.33 and 2.34. Then by introducing E and T = pr/R' as 
independent variables, equations 2.33 and 2.34 become : 

AT, - MI'" = -MI'" = -MI'') = constant (2.36) 

M E ,  = pK(T,p,e)/TR' (2.37) 

Equations 2.36 and 2.37 are combined to give: 

dT/de = M2(I'" - I'O))R'T/XKp (2.38) 

The problem is to find a solution of equation 2.38 which satisfies T = TO for 
E = 0 and T = TI  for e = 1. The values To and TI  are restricted by the require- 
ment that the complete enthalpy does not change, i.e., 1") = I'l). It is now seen 
that there is only one particular value of M for which the solution just assumes 
the value T = To for B = 0 and T = T I  for c = 1. That is, there is only one 
point on the deflagration branch of the Hugoniot curve which is possible, and 
the extra condition to be imposed is that M should have the particular value re- 
quired for the solution. Thus the flame velocity v~ = M/po is completely de- 
termined in its dependence on X, p ,  TO, PO, I"), and K. 

The mathematical problem is thus to find expressions for the dependent vari- 
ables T ,  v ,  E, and p which satisfy the differential equations and the two sets of 
boundary conditions, together with the value of M which makes i t  possible to 
satisfy these conditions simultaneously. In other words, it is an eigen-value 
problem for M .  

IV. COMPREHENSIVE THEORIES 

A .  The theory of Lewis and von Elbe (76) 
No,, No, No, = concentration of 02, 0, 03, respectively, 

Eo,(T) = heat of decomposition of 1 mole of ozone, 
Eo(T) = heat of recombination of 1 mole of oxygen atoms, 

w = rate of formation of oxygen, 
K,, K ,  = equilibrium constants in terms of concentrations and partial 

pressures, respectively, 
M = mole ratio (moles Oz/moles 03) in original mixture, 

the unburned gas to 1 in the burned gas, 
c = degree of completeness of the reaction, varying from 0 in 

E = energy of activation, and 
2 = number of collisions per unit volume per unit time between 

0 and Os. 
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Lewis and von Elbe in this theory were the first (1) to reject the concept of 
ignition temperature and to introduce explicitly the expression for the reaction 
velocity as a function of temperature and concentration, (2) to consider the 
effect of diffusional as well as heat conduction processes and to use the equations 
of continuity, and (3) to suggest that active atoms and radicals in the flame 
diffuse into the fresh gas and play an important role in bringing the fresh gas 
to a reacting state. 

The authors consider the simple exothermic ozone-to-oxygen reaction, for 
which they have measured flame velocities a t  various pressures and initial 
temperatures (75). The postulated mechanism is: 

(a) 0 3  * 02 + 0 

(b) 0 + os = 202 

The simplifying assumptions are as follows: 
Assumption 1; Pressure is assumed constant. 
Assumption 2: The heat capacity of the gas mixture is given a constant value 

equal to the mean heat capacity of O2 in the temperature range. 
Assumption 3: The equilibrium represented by equation (a) is assumed to 

exist across the whole flame zone. The problem is thus reduced to the case of a 
single reaction, and the velocity of the flame is determined by the progress of 
reaction (b). The authors state their intention of developing a theory in which 
diffusion of atoms or radicals into the unburned gas is decisive in initiating the 
chemical reaction. However, as Zeldovich, Frank-Kamenetsky, and Semenov 
(114, 115) point out, because of this assumption of equilibrium (a) it is necessary 
to consider the diffusion only of the initial reactant (Oa) and the final product 
(OJ. The single equation of continuity is written: 

= 0 (continuity) (3.1.01) 
d -  NO,^) + & (. 

dx 

The equilibrium equation is written 

Ko NJJo,/No, (equilibrium) (3.1.02) 

Assumption Q: The diffusion coeEcient for the diffusion of oxygen in the gas 
mixture is taken to be that for its diffusion in a gas consisting entirely of oxygen 
molecules. It is thus independent of composition, though not of temperature. 
It is written 

D f&b,/3 E C1Tai2/p (3.1 -03) 

where %,(T) is the average velocity of the oxygen molecules at temperature T, 
&,, is the mean free path in a gas consisting of oxygen molecules, and C1 is a 
constant numerical factor. This expression is valid for molecules of equal size 
and weight. 

Assumption 6; It is assumed that the total thermal and chemical energy per 
unit mass is the same a t  every point in the flame. This assumption, which is ex- 
pressed in algebraic form, makes it unnecessary to consider the differential equa- 
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tion of energy, and hence simplifies the mathematical problem. The equation 
is writ.ten as follows: 

(energy) (3.1.04) 

This hypothesis is equivalent to the requirement that Dp = X / c p  (97, 114). 
Lewis and von Elbe (80) are of the opinion that there is always an excess en- 
thalpy, and that this excess constitutes the energy barrier which prevents igni- 
tion of explosive gases by infinitesimal sources. However, the assumption that 
Dp = X / c ,  is taken as a reasonable approximation. 

Assumption 6:  If the thermal dissociation of oxygen molecules in the com- 
pletely burned gas is neglected, the equation of state becomes: 

(3.1.05) 

Eo,No, + EONo = (No, + 1.5N0, + 0.5No)Cp(T1- T )  

No, + NO, + NO = (N0,)ITdT 
Equation 3.1.05 is approximated by 

No, = (NO,)ITl/T (state) (3.1.06) 

This approximation is most serious a t  low temperatures, where the relative con- 
centrations of ozone are high. 

Assumption 7: The principle of conservation of mass may be mitten 

u/T(l + 0 . 5 ~  + m) = constant (3.1.07) 

where 

O < e _ < l  and ~ = O a t x = x o  

c = 1 a t  x = 21 

Equation 3.1.07 is approximated by 

v/T = constant (conservation of mass) (3.1.08) 

Assumption 8: According to the assumption that reaction (b) is the rate- 
determining reaction, the rate of formation of oxygen by chemical reaction, w, 
is determined by the frequency of collision between oxygen atoms and ozone 
molecules and by the probability of reaction occurring upon collision. Every 
successful collision produces two molecules of oxygen. Therefore the rate is 
written 

w = 2&,--E’RT (3.1.09) 
where 

(3.1.10) 

u being the average diameter of the molecules 0 and 0 3 ,  and Mo and Moa repre- 
senting the molecular weights of the oxygen atom and the ozone molecule, re- 
spectively. 

The dependent variables are T ,  u, No,, No,, and No (or alternatively for No, 
p ) .  The set of equations is composed of equations 3.1.01, 3.1.02, 3.1.04, 3.1.06, 
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and 3.1.08. Equations 3.1.03 and 3.1.09 are substituted into equation 3.1.01. 
Combining equations 3.1.02, 3.1.04, and 3.1.06 gives 

and 

(3.1.11) 

(3.1.12) 

Let y = (dT/dx)D/T2. Then by combining equations 3.1.01, 3.1.06, and 

-ddy/dT) + Dw/T2(No,)J'~ = 0 (3.1.13) 

Let the cold-boundary condition be dT/dx = 0 a t  T = To. Then from equation 
3.1.13 one finds: 

3.1.08 one finds: 

(3.1.14) 

After introducing equations 3.1.03, 3.1.09, 3.1.10, 3.1.11, and 3.1.12 into equa- 
tion 3.1.14 and computing the numerical factors) the equation for dT/dx be- 
comes, in degrees per centimeter: r2 (3.1.15) d T  [(T1/T) - 1]2e-16'aoo'T - = 7.17 X lo9 Cpp3'2 dx { LI i1.76 X loi4 e-lz,aoo'T + 3.4( 104)p]2 

The curve for T as a function of x is obtained by integrating equation 3.1.15 
graphically, plotting dx/dt versus T, and again integrating graphically. This 
procedure implies the introduction of a second boundary condition, two condi- 
tions being required for the particular solution of a second-order differential 
equation. This condition is essentially that T = To a t  x = - w . Curves for No,,  
No,, No, and p as functions of x are readily obtained. 

In  order to determine v as a function of x ,  it is necessary to determine the value 
of the characteristic constant of equation 3.1.08. This constant, taking into con- 
sideration assumption 7, may be considered equivalent to the eigen-value M 
which, as has been shown previously, should be determined by requiring the 
eolution of the differential equation to fit two sets of boundary conditions. As 
a result of assumptions 6 and 7 the differential equation 3.1.13 does not contain 
the variable v or the characteristic constant. Consequently, only one set of condi- 
tions, namely T = To and dT/dx = 0 a t  x = - C Q ,  was required to obtain a 
solution of the equation. The physically plausible conditions a t  the burned end, 
T = TI and dT/dx = 0 at x = w ,  are not imposed. Figure 2 shows T versus x 
as obtained by Lewis and von Elbe (76). It is seen that the curve near the burned 
side does not behave as it would be expected to from physical considerations. 

The flame velocity) 210, is obtained by considering that the number of ozone 
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0 

2000 

1600 
hi 
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molecules entering the flame front per unit time is equal to the number reacting 
per unit time. Thus 

/ 
- 

- 

- 

(3.1.16) 

TO ~ TI 

i -~ 
P 

mm. Hg OK. ~ OK. 

624 300 ‘ 1239 
2560 427 1 1343 
495 302 ’ 1922 

3760 I 468 2044 

Upon the introduction of expressions for w and dx/dT an expression is obtained 

- 

PO 
m - 

Experimental Calculated 

cm. jscc.  cm./scc. 

3.054 
~ 55 

253 
1 3.054 158 451 

1.016 160 ~ 333 
1.016 I 747 664 

for vo which can 

800 I 

Table 1 gives a comparison of observed and calculated flame velocities ac- 
cording to Lewis and von Elbe. 

Notwithstanding the fact that the mathematical treatment of the problem is 
not entirely satisfactory, since the mass flow is not obtained by requiring the 
solution of the set of equations to fit boundary conditions a t  both limits of the 
flame zone, the observed and calculated flame velocities are of the same order 
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of magnitude. Therefore it would seem that this method of solution gives a first 
approximation to actual behavior, a t  least in the lower temperature regions. 

B. The theory of Zeldovich, Frank-Kamenetsky, and Semenov (97, 114, 115, 116) 

L = heat of combustion of 1 g. of initial mixture, 
Q' = heat of reaction (calories/molecule of reactant), 
h = heat of reaction (calories/gram of reactant), 
w = rate of reaction (molecules of reactant/cmP sec.), 
a = molecules of reactant/cm.a, 
y = thermal diffusion constant, 
S = collision number, 
Z = impact coefficient; number of collisi~ns/cm.~ sec., and 

n,/n, = (moles of reactant/moles of product) by the stoichiometric equa- 
tion. 

The theory of flame propagation as developed by Zeldovich and Frank- 
Kamenetsky (114,116) has been discussed a t  length by Semenov (97); the latter's 
discussion will be followed here for the most part. The theory assumes the re- 
action model nA = B + C . + * , for which the reaction order may be zero, first, 
or second with respect to A. Intermediate reactions or particles are not con- 
sidered. 

Assumption 1 : Pressure is assumed constant. 
Assumption 2: The number of molecules does not vary during the reaction. 

This restriction is later removed to allow the number to change in the ratio 
n h .  

Assumption 3: cp and X are constant; hence X/c, is constant. This restriction 
is later partially removed by assuming that X/c, has a mean value in region I, 
defined below, and is equal to the value Xl / ( cp ) ,  in region 11. 

Assumption 4: X/c, = Dp. This assumption has the effect of reducing the 
number of differential equations from two to one by replacing one of the differ- 
ential equations with an algebraic equation. Later this restriction is modified 
to allow 

( X / C P > / D P  = A / B  
A and B being constants. 

Assumption 6: It is assumed that there is a temperature Ti very near to TI, 
below which there is practically no reaction. Ti is essentially an ignition temper- 
ature which is used not as a physically significant constant but as a mathematical 
device for approximate computation. Ti does not appear in the final expressions. 

The single second-order differential equation is solved by dividing the integrat- 
ing range into two sub-intervals. In region I, in which the temperature rises 
from T = To to T = Ti and x varies from - w to 0, there is no reaction. Region 
11, in which reaction occurs, extends from T = Ti at x = 0 to T = T1 a t  x = d. 
From x = d to x = 00 the reaction rate is zero, the temperature constant, and 
the solution obvious. 



THEORIES OF STEADY-STATE FLAME PROPAGATION 385 

Assumption 6: It is assumed that in region I1 for T i  near in value to TI i t  is 
possible to neglect the mass flow term with respect to the reaction and heat con- 
ductivity terms. 

The equations of continuity, energy, state, and mass are mitten as 
after taking into consideration assumptions 3 and 4: 

d T  wQ' 
cp d x 2  dx c, 

M - + - = O  X d2T - - -  

P / P O  = To/T (state) 

pv= M (conservation of mass) 

By assumption 4 one may obtain an algebraic relation between the 

follows, 

(3.2.01) 

(3.2.02) 

(3.2.03) 

(3.2.04) 

temper- 
ature and the composition of the mixture in the following way: Define-the 
variables 0 and a as follows: 

e = C ~ ( T  - T~)/Q' (3.2.05) 

and 

a! = %/PO - a/p (3.2.06) 

Substituting equations 3.2.05 and 3.2.06, equations 3.2.01 and 3.2.02 may then 
be written: 

d2a da 
dx dx Dp -2 - M - + w = 0 

and 

(3.2.07) 

(3.2.08) 

The boundary conditions for equations 3.2.07 and 3.2.08 are prescribed as follows: 

F o r s  = - w , a  = 0,e = 0 

For s = + to, LY = a,,/po, 0 = c,(Tl - To)/&' 

For the condition Dp = X/c,, equations 3.2.07 and 3.2.08 are identical in form, 
and if the equations and the boundary conditions for a and 8 coincide, i.e., LY = e 
over the entire interval, then 

c,T + aQ'lp = cPTo + GI&'/PO = c,T1 (3 -2 -09) 

The meaning of equation 3.2.09 is that the sum of the thermal and chemical 
energies per unit mass of the mixture is constant in the combustion zone. That 
is, the relation between the temperature and the composition of the gas mixture 
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in the flame is the same as that for adiabatic behavior of the reaction a t  constant 
pressure. This is the hypothesis used by Lewis and von Elbe. 

One may now replace the differential equation 3.2.01 with the algebraic equa- 
tion 3.2.09. The problem then reduces to one requiring solution of only one differ- 
ential equation (equation 3.2.02). 

First consider a zero-order reaction, for which it is not necessary to consider 
the equation of continuity, inasmuch as the rate w is not a function of concentra- 
tion. Only the energy equation 3.2.02 is necessary. The integrating range is 
divided into two sub-intervals. In region I, w = 0 according to assumption 5 
and the energy equation is written 

d2T Mc,dT - 
dxZ X dx 
- - - _ _  (3.2.10) 

where a t  x = - 03, T = To, and a t  x = 0, T = Ti. 

is neglected and the energy equation is written 
In region 11, according to assumption 6, the second term of equation 3.2.02 

d2T w&' -@+x=o (3.2.1 1) 

where a t  x = 0, T = Ti, and a t  x = d, T = TI. 
The added condition which determines the eigen-value M is the requirement 

of continuity of heat flow q = -X  dT/dx, where the two regions meet. That is, 
i t  is required that 

(dT/dz)d,, = (dT/dz)d,n (3.2.12) 

Upon solving equations 3.2.10 and 3.2.11 and applying the boundary condi- 
tions, one obtains an expression for the flame velocity 

(3.2.13) 1 2XI d2'&' jT1 w d T  = d c , p ~ ( T I  - To) VQ = M/po = - 
PO L Ti  

where 

Equation 3.2.13 resembles the expressions obtained by the early theories de- 
scribed in Section V,A, if w is set constant over the interval Ti to TI. 

Now let w be a function of T, according to the expression for a zero-order chem- 
ical expression 

= s e - E ' R T  (3.2.15) 

where S, the collision number, is a constant. It is desired to eliminate Ti from 
equation 3.2.13, since i t  has no physical significance. 

For sufficiently large energy of activation E,  such that E/RT1 9 1, the temper- 
ature Ti below which the velocity of reaction may be neglected will be near TI. 
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Set u = (Ti  - T) and let its values range from u1 = (T1 - Ti) to 0. Since 
u Q Ti, 

--BIRT - e - E / R T 1  - E u I R T :  . e  - e 

Then by equations 3.2.15 and 3.2.16 for a zero-order reaction: 
= s e - E I R T i  . e-EUIRT: 

This expression for w is now introduced into equation 3.2.14 to give 

RT? Se-'IRT1 RT: ~ ' 1  - se-E l  R T i  

e 'dp = - - 
ao E - 7 T j  

where 

p = Eu/RT: and 01 = Eul/RT; 

With an accuracy sufficient for the problem, set 

Then the expression for I for a zero-order reaction is written 

I = (Se-E/RTi/ag)/(RT?/E) 

whence, according to equation 3.2.13, vo for a zero-order reaction is 

(3.2.16) 

(3.2.17) 

(3.2.18) 

(3.2.19) 

(3.2.20) 

(3.2.21) 

(3.2.22) 

The order of magnitude of error incurred because of the approximation of 
equation 3.2.20 may be indicated by the fact that if u1 = 2RT;/E, then = 2 
and j = 0.87, so that there is an error of about 15 per cent in vi. 

Reactions in which w is a function of composition as well as of temperature 
will now be considered. In particular, consider unimolecular reactions for which 

= kae-E/RT (3 -2.23) 

and bimolecular reactions for which 

(3.2.24) 

Since a new dependent variable a has been added, one more equation is required. 
This is equation 3.2.09, which expresses a as a function of T .  

By introducing equations 3.2.03, 3.2.09, 3.2.16, and 3.2.23 into equation 
3.2.14, an expression for I for a first-order reaction is obtained. 

2 - E I R T  w = k a e  
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TO/T is taken outside the integral sign and set equal to To/Tl, since Ti is near 
in value to Tl. Set 

j = s,"' e-'p dp = 1 - e-'l(pl + 1) = 1 (3.2.26) 

Equations 3.2.19 and 3.2.26 are substituted into equation 3.2.25 and integrated 
to give an expression for I which, when placed in equation 3.2.13, gives the follow- 
ing expression for vo for a first-order reaction: 

(3.2.27) 

For the case of PI = 2, setting j equal to 1 introduces an error of 40 per cent 

Some of the restricting assumptions may now be removed. If one allows the 
number of molecules to change in the ratio n,/np, assigns X and c, the mean 
values X and Cp in region I and the value of the burned gases Xi and (c , )~  in region 
11, and sets ( X / c p ) / D p  = A / B ,  the equation for a unimolecular reaction becomes 

into v i .  

(3.2.28) 
(Ti - To)' 

POC, 

and for a bimolecular reaction is 

It is desirable to consider the conditions for which this method is valid. 
Semenov (97) makes an estimate of the range of application to which the soh- 
tion is limited because of the neglect of the mass flow term in the energy equa- 
tion 3.2.02 in region 11. He concludes that, provided (Ti - TJ/(T1- TO) 5 0.25, 
an error no greater than 8 per cent is incurred in vo from this approximation. He 
next considers the error incurred in neglecting the chemical reaction at  temper- 
atures less than Ti = TI - rl while maintaining the condition a 5 0.25 (Tl - 
To). He concludes that for bimolecular reactions the solution is valid only for 
RTl/E 5 0.1. Hence for a bimolecular reaction the application of equation 
3.2.29 is restricted to values of E greater than 40 kcal. at TI = 2000". For uni- 
molecular reactions the conditions are more favorable. 

Belayev (17) applied the theory to the computation of the speed of combustion 
of the vapor of nitroglycol. The heat of combustion of the vapor phase is con- 
ducted to the surface of the explosive and causes the vaporization of the liquid. 
The mass rate of vaporization is directly measured by the rate of lowering of the 
meniscus of the liquid, and is assumed equal to the mass rate of combustion of 
the vapor. 

It is assumed that the activated molecule of nitroglycol decomposes by itself 
and the reaction is possible on impact with any particle. The equation for uni- 
molecular reactions (equation 3.2.28) is used, except that the steric factor k, 
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instead of being given the first-order value of is replaced by Z N ,  where 
N is the number of all molecules in a unit volume. The calculated vo agrees well 
with the measured result, both being about 4 X g./sec. cm.' 

The theory was also applied to the oxidation of carbon monoxide in the pres- 
ence of water. The oxidation is assumed to be a chain reaction, the velocity of 
which very soon attains a stationary value, so that the velocity of the reaction 
is completely determined by the temperature and concentration at  any point 
in the reaction zone. Zeldovich (97) analyzed the data on the properties of carbon 
monoxide flames and proposed a mechanism which fits the following kinetic law: 

I I I I 1 I 

Ob 10 20 30 40 50 60 
% co 

3 

FIG. 3. Experimental and theoretical values of v o  for carbon monoxide-air mixtures ac- 
cording to  Semenov (97). Curve A shows the calculated values; curves B and C give experi- 
mental data obtained by Passauer (92) and Jahn (55).  

Using this kinetic law the theory accounts satisfactorily for experimental 
results of measurements of carbon monoxide flames in which carbon monoxide 
is in excess as well as those in which there is a deficiency of carbon monoxide. 
According to the expressions obtained for vo, vo should beproportionaltod(H, O)o, 
where (H2O)o is the concentration of water a t  the original temperature. The 
results of Fiock and Marvin (39) are replotted in this way and give reasonably 
good straight lines. The theory also indicates that for constant per cent of 
moisture content 00 is independent of pressure, and that for constant water vapor 
pressure, vo varies as l/G. This correlation was observed experimentally. Com- 
puted values of vo for various ratios of carbon monoxide and air were compared 
with experimental measurements made by Jahn (55) and Passauer (92). Results 
are shown in figure 3. 
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In this treatment of the carbon monoxide flame the diffusion of the active 
particles H, OH, and 0 into the fresh gas is neglected. This is in contrast to the 
treatment of Tanford and Pease, who place the emphasis on the diffusion of 
active particles, particularly hydrogen atoms, into the fresh gas (104-107). 

Dugger (36, 37) measured flame velocity as a function of initial temperature 
for propane-air and ethylene-air flames, and compared the curves for the ex- 
perimental data with curves calculated by the Zeldovich-Frank-Kamenetsky 
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FIG. 4. Dependence of v o  on TO (37). Curves AB show experimental data by Dugger; 
curves AC are calculated according to  the Zeldovich-Frank-Kamenetsky method; curve8 
AD are calculated according to  the Tanford-Pease method, using 

ZpiDi,, = 6 . 5 ~ ~  + POH + PO 
The upper set of curves is for ethylene-air, while the lower set is for propane-air. 

theory as well as with curves calculated according to the Tanford-Pease theory. 
Dugger assumed that the controlling step was a bimolecular reaction. He elim- 
inated from equation 3.2.29 the terms not dependent upon temperature and 
substituted as approximate relations for the temperature-dependent terms those 
determined for air. In this way he reduced equation 3.2.29 to the form: 

(3.2.31) 

Figure 4 shows the curves thus obtained. 
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C. The theory of Boys and Corner (21, 23) 

Q = heat of reaction (calories/gram of product), 
E = energy of activation, 

e = degree of completeness of the chemical reaction, varying from 

K ( E ,  5") = rate of reaction (gram of product/gram of mixture per second), 
0 in the unburned gas to 1 in the burned gas, 

W = average molecular weight of reactant, 
w = average molecular weight of product, and 
n = W / w  = 1. 

Boys and Corner assume a single exothermic chemical reaction. The diffusion 
of active particles is not considered. In their first paper (21) the diffusion of re- 
actant and product is assumed to be small enough to be neglected; in the second 
(23) such diffusion is included in the development of the theory. The method being 
essentially the same in both papers, only the second will be discussed here. 

Simplified models allow analytical solutions by a method of successive ap- 
proximations. Three models are used: a first-order rate from a unimolecular 
mechanism, a second-order rate from a bimolecular reaction, and the quasi- 
bimolecular form of a unimolecular reaction at  low pressures. The accuracy of 
the analytical solution is compared with a numerical solution. 

Assumption 1: Pressure is constant in the system. 
Assumption 2: c,, A, and D are assigned constant mean values. Corner points 

According to the models and the assumptions, the equations of continuity, 
out that D actually varies as T2 or T7I4. 

energy, state, and conservation of mass are written as follows: 

-D-  _ _  + M A =  de MK(e' (continuity) (3.3.01) 
dx [" v dx de] dx V 

d2 T dT  MQK(e,T) 
dxa dx V 

- A  - + Mc, - = (energy) (3.3.02) 

pvW/RTM = 1 + ne (state) (3.3.03) 

p v  = M (mass) (3.3.04) 

The two sets of boundary conditions required to determine the solution of the 
equations and the characteristic value M are 

Define the variable G as follows: 

G = e - (D/v) de/dx 

(3.3.05) 

(3.3.06) 
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so that at x = 03, G = 1, and a t  x = - CQ, G = 0. By substituting equation 
3.3.06 into equations 3.3.01 and 3.3.02 one obtains: 

dG/& = K/v (3.3.07) 
d [ M c p T  - X -  dT  - QMG] = 0 
dx dx (3.3.08) 

Integration of equation 3.3.08, using the boundary conditions at x = , gives: 

- -  dT - MIc,(T - TI) + Q(1 - G)}/X dx (3.3.09) 

By combining equations 3.3.03, 3.3.06, and 3.3.09 v and x can be eliminated 
to obtain an equation for de/dT as a function of e, T, and G: 

Similarly combine equations 3.3.03, 3.3.07, and 3.3.09, using for K(e,T) the 

K(e,T) = Bl(1 - e)e-E/RT (3.3.1 1) 
where B1 is a constant. This gives an expression for dG/dT in terms of e and T: 

expression for a first-order reaction 

Equations 3.3.10 and 3.3.12 are exact for the conditions specified. 
A first approximation to the solution of equations 3.3.10 and 3.3.12, valid 

near the burned end of the flame zone, is obtained by retaining in the equations 
only terms dominant in this region. Thus, near the hot boundary of the flame 
zone the terms T - TI, 1 - G, and 1 - e are small, and they determine the 
behavior of the solution in this region. All other functions of T and E can be given 
values corresponding to T = Tl and e = 1. The simplified equations have a 
solution which, where T - T1 and 1 - e are sufficiently small, approaches the 
solution of equations 3.3.10 and 3.3.12 for the boundary conditions T = Tl 
where e = 1. This solution is then substituted into exact equation 3.3.12, so 
that e is eliminated and a separable equation between G and T is obtained which 
can be integrated. This second approximation to the solution is 

d T  (1 + n)(G - 1) + (G - = - /Tl - XPQ T 

T n8 1 + Pe 

where 
x = M~R/XB~PW 

y = XRTl(1 + n)/c$pW 
p = e-E’RT1/XcpTI(l + n)  

e = r [(I + :)”’ - 1 1  
2P 
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The solution 3.3.13 satisfies the boundary conditions at the hot boundary, 
but not necessarily at the cold boundary. The parameter M ,  for which the solu- 
tion satisfies conditions at both boundaries, must be determined by requiring 
the solution 3.3.13 to satisfy the boundary conditions at the beginning of the 

is 
negligible in comparison with Thus the equation which must be satisfied 
by M and which determines the properties of the flame is 

flame: namely, that G = 0 when T = To. When T is small, near To, 

1 + n - 55ne = (1 + pe)(RT1/E)e-E'RT'/XPQ 

= (1 + bexi  + ~ ) ( R T ~ / E ) c , w Q  (3.3.14) 

M is found from X, which can be readily determined by trial. Equation 3.3.14 
can be rearranged to give an explicit expression for X ,  but the expression is 
cumbersome. 

Corner (23) presents calculations which show that for typical values of diffusion 
rates the flame speed calculated by neglecting diffusion is more than twice the 
value obtained if diffusion is considered. 

A similar solution is given by Corner for a reaction which takes place upon a 
sufficiently violent collision of a reactant molecule with any molecule of any type, 
the low-pressure form of a unimolecular decomposition. The rate expression for 
this type of reaction is 

K ( ~ , T )  = B , ~ ( I  - €)(I + ne)e--&IRT (3.3.15) 

The solution for this reaction type is equation 3.3.14 if, for this case, 

x = M ~ R ~ / x B ~ ~ ~ w ~  

p = e--BIRT1 / X T ; ( l  + n)c, 

and 

Also treated is the bimolecular reaction for which 

(3.3.16) K(e,T)  = &p(l - e) 2 e - E I R T  

Its solution involves numerical computation, and Corner gives tables which 
facilitate the computation. 

Comparison between this approximate method of solution and the exact solu- 
tion obtained by numerical integration, for a first-order reaction with typical 
values for the parameters, showed that the approximate method gave a flame 
speed about 5 per cent larger than the numerical method. 

Boys and Corner have treated essentially the same models as Zeldovich and 
Frank-Kamenetsky. This method appears to give a more systematic approxima- 
tion to  the solution. One advantage of the method of the Russian workers is that 
they consider Dp to be a constant, an assumption which is more nearly correct 
than the assumption of Boys and Corner that D is constant. 
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D. The theory of Hirschfelder and Curtiss (48, 49, 50, 51, 52, 53) 

n = number of moles per unit volume, 
k = Boltzmann’s constant, 
y, = n,/n = mole fraction of the ith chemical species, 
m, = molecular weight of the ith chemical species, 

P, = diffusion velocity of the i th  chemical species, 
G, = m,n,(B + P , ) / M  = fraction of the mass rate of flow which is 

w, = nfm,/p = weight fraction of the ith component, 
c, = specific heat at  constant pressure per unit mass of the i t h  chem- 

H,(To) = enthalpy per unit mass of the ith chemical species a t  a reference 

H ,  = H,(To)  + c, d T  = enthalpy per unit mass of the ith species, 

p,, = number of molecules of the ith species which react stoichio- 

B = mass average velocity at a point (centimeters/second), 

contributed by the ith chemical species. 

ical species, 

temperature To, 

6’ 
metrically in the j th  chemical reaction, 

k , ( T )  = rate constant for the jth chemical reaction, 
f , (T )  = n””k,(T) = rate constant for the j* chemical reaction modi- 

fied for use in connection with mole fractions, 
K,(y,,T) = c(q,, - p,,)f,(T)y!”y~’l = total rate of production of moles 

of the ith species per unit volume due to chemical reactions, 
I 

s = total number of kinds of chemical species, 
g = total number of linearly independent G,, and 

E = activation energy. 

It is apparent that for chemical process of any complexity, numerical methods 
of solution of the flame equations are necessary. The laboriousness of the com- 
putations has for the most part caused the technique to be neglected. However, 
recent development of high-speed computing devices offers the opportunity of 
performing the necessary computations more rapidly. For this purpose Hirsch- 
felder and Curtiss have set up general equations for one-dimensional, steady- 
state, non-viscous, constant-pressure flames in a form suitable for solution by 
differential analyzers or high-speed digital computing devices (50, 51 , 52, 53). 

The equations of these authors differ from those of others in several important 
respects. First, the equations are completely general with respect to number of 
components, number of reaction steps, and order of the reactions. Second, the 
diffusion coefficients are not assigned mean values or set equal to the simple co- 
efficients for binary mixtures. Instead, approximate (50, 51) or exact (52, 53) 
equations of diffusion in terms of composition gradients are used. Third, the 
equations are stated in such a way that the chemical kinetics enter only in the 
continuity equations. Fourth, the authors believe that it is not physically reason- 
able to separate a stationary flame from the flame holder at  which it originates. 
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They therefore introduce a t  the cold boundary a mathematical flame holder 
with specified properties. 

Numerical results are given for a unimolecular reaction and a bimolecular 
reaction for each of which I, the number of chemical reactions with reverse re- 
actions, is equal to 1 (49, 52, 53). The mathematics is much more difficult for 
flames which are propagated by a sequence of reactions. The authors give a 
method for developing an asymptotic solution a t  the hot boundary which in 
principle could be extended by numerical methods to give a complete solution. 
For systems with complex chemical kinetics this would involve the simultaneous 
determination of a number of eigen-values in non-separable equations (52, 53). 
This is not attempted, but the authors suggest a method for obtaining an ap- 
proximate solution. 

The equations for flame propagation are written, with heat capacity assumed 
independent of temperature: 

(continuity) (3.4.01) dG, M -' = m, Ki(yj ,T) 
dx 

- - -  A dT - E H ~ G ~  - (E H ~ G ~ ) ~  
M dx i i 

or 

(3.4.02) 

(energy) (3.4.02) 

(diffusion) (3.4.03) 

n = En, = p/RY (state) (3.4.04) 

The boundary conditions are specified a t  the hot boundary, x = 0 0 ,  on the 
assumption that there is complete thermal and chemical equilibrium. At the cold 
boundary, x = 0, there is inserted the flame holder, which has two properties. 
It is a semipermeable membrane through which fuel gases flow freely, but through 
which product molecules cannot pass, so that back-diffusion into the mixing 
chamber is prevented. Furthermore, it acts as a heat sink, extracting a pre- 
determined amount of heat, qo = -X(dT/dx),,, from the flame. 

The rate of flow of each component, mini@ + F J ,  is the same on both sides 
of the membrane, but before the membrane the diffusion velocities are zero since 
the final composition is constant. Hence the boundary conditions a t  the cold 
boundary are: 

(Gi)o = [m,Y,n/P]mixing chamber (3.4.05) 

Note that it is not possible to specify the composition of the gas a t  the cold 
boundary (the yi), because product gases diffuse back to x = 0. For this reason 
it is difficult to integrate the equations from the cold to the hot boundary. 

1. 
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The conditions of equilibrium a t  the hot boundary are 

Ki[(yj)l,T1] = 0 (3.4.06) 

(3.4.07) 

(Gill = [mi~,n/pli (3.4.08) 

These three equations are equivalent to the following conditions: 

(dGi/dx)l = 0, (dT/dx)l = 0, (dyi/dz)l = 0 (3.4.09) 

Equations 3.4.06 and 3.4.07 must be solved simultaneously in order to determine 
T1, the adiabatic flame temperature, as modified by the heat loss, (A dT/dx)o, 
and the corresponding composition. 

The method of solution of the flame equations 3.4.01, 3.4.02, and 3.4.03 is 
applied to  single-stage reactions of the type A 3 bB, for which the solution is 
reasonably simple (48, 49, 50, 53). Since only two components are present and 
G, = 1 - Gb and ya = 1 - Yb, equations 3.4.01,3.4.02, and 3.4.03 can be written: 

$1 dGb/dX = mbKb (continuity) (3.4.10) 

&E = (1 - Gb)(Ha - Hb) + Hb - (Hb)l (energy) (3.4.11) 

Gb Wb - (pDoa/M)(dwb/dX) (diffusion) (3.4.12) 

If x is treated as a parameter, equations 3.4.10,3.4.11, and 3.4.12 may be written: 

(3.4.13) dGb/dT = hmbKb/Mz[(l - (&)(Ha - Ha) + Hb - (Hb)l] 

dwb/dT = x(wb - Gb)/PDd[(l - '%)(Ha - Hb) + Hb - (Hb)l] (3.4.14) 

For a single-stage reaction, 

Kb = -mZ,/mb (3.4.15) 

It is convenient to define parameters e and G: 

e = [wb - (wb)O]/\l - (wb)O] = 1 - (p/%)O(%/P> (3.4.16) 

E represents the degree of completion of the reaction. If the reverse reaction is 
negligible, both e and G vary from 0 a t  the cold boundary to 1 at the 
hot boundary. Finally, define Hd as the heat released per gram of the fuel gas: 

Hd = m a ( H a  - Hb)(na/P)o 

= ( H ~ ) o  f {ma(na/P)o[(Cp>a - (cp)b]) (T - TO) (3.4.18) 

Making use of equations 3.4.15, 3.4.16, 3.4.17, and 3.4.18, equations 3.4.13 
and 3.4.14 may be written 
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T i  

de/dT = A(€  - G)/pD,b (1 - G ) H d  - IT (cp)bdT] (3.4.20) 

Equations 3.4.19 and 3.4.20 apply to any form of reaction velocity. Note that 
they correspond to equations 3.3.10, 3.3.11, and 3.3.12 of Corner, with Corner 
giving a first-order expression for K,. 

c 
For a unimolecular decomposition the reaction rate is 

-K,  = Bnae-E'RT (3.4.21) 

Setting the specific heat constant and introducing equation 3.4.21, equations 
3.4.19 and 3.4.20 give for a unimolecular reaction 

(3.4.22) d ( l  - G)/dz = pl(l - a)/M2[(1 - G) - Z] 
d(l  - e)/dz = &[(l - G )  - (1 - e)]/[(l - G )  - Z] (3.4.23) 

where 

p1 = BXpe-E'RT/(c,)b (3.4.24) 

P 2  A/PDab(cp)b (3.4.25) 

= [(~p)b/Habli/(Ti - TI (3.4.26) 

In carrying out the numerical integration of equations 3.4.22 and 3.4.23 it is 
helpful to have an approximate value for M .  This may be obtained by the 
Corner method or by a modification of it, or by a method proposed by Adams 
(48). Furthermore, to perform the integration i t  is necessary to know the initial 
derivatives and the solution in the neighborhood of the hot boundary. With this 
information the equations may be integrated systematically toward the cold 
boundary. The correct value of M is the one for which the G-T curve approaches 
G = 0 a t  the cold boundary. This can be determined with any degree of precision 
by making a sufficient number of trial runs with assumed values for M .  

In place of the hot-boundary conditions in which x is the independent vari- 
able, it is necessary to state the conditions applicable to equations 3.4.22 and 
3.4.23. At the hot boundary T = TI, el = GI = 1, and the equations are in- 
determinate. One must therefore determine 

L i m { d ( l i  " ) }  and Lim{ d ( l  dZ - ''1 
2- 0 2- 0 

This is done in the usual way by taking the ratio of the derivative of the numera- 
tor to the derivative of the denominator and evaluating a t  T = TI. The condi- 
tions a t  the hot boundary are found to be 

(3.4.27) 
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(3.4.28) 

Hypothetical flames involving the first-order decomposition of azomethane 
( C Z H ~ N ~  ---f CZH6 + Nz) (49) and the bimolecular decomposition of nitric oxide 
(2N0 * NZ + 0,) (49, 53) were studied in detail. 

Four cases for the azomethane decomposition were considered: (a) no heat 
lost to the flame holder, so that po = 0; ( b )  a reasonable amount of heat lost to 
the flame holder (po = 10 cal./cm.' see.); ( c )  50 per cent by volume of inert gases 
introduced with the fuel; (d) the decomposition assumed to take place by the 
autocatalytic mechanism (CZH6N2 4- CzHs + .ZCzH6 4- N,). 

Results indicated that at  1 atm. pressure, for cases (a), (b), and (d), the de- 
composing azomethane has a large flame velocity and a narrow flame zone. The 
authors suggest that heat is probably released faster than the flame can dis- 
sipate it, with the result that a detonation front is formed. For case (c) the flame 
velocity was calculated to be 15 cm./sec. and the flame thickness 0.019 cm. Since 
these are normal values, it is suggested that a stable flame may be possible for 
a mixture of equal parts of azomethane and nitrogen. 

For the decomposition of nitric oxide the equations were modified slightly 
to take into account the reverse reaction. Since equilibrium is established a t  the 
hot boundary the limiting value of e is not unity but is less than 1, the value 
being determined by the equilibrium constant. For this hypothetical flame it was 
found necessary to require that the temperature To be -800°K. in order to 
increase the burning rate sufficiently so that even the slow flame speed of 10 
cm./sec. be obtained. For qo = 0, a hot-boundary value T I  = 3000°K. corre- 
sponds to an inlet temperature To = 800°K. 

Figure 5 illustrates the method of determining the eigen-value M .  The value 
of GNo a t  the cold boundary is 1. At the hot boundary its value is calculated to 
be 0.0564. If the integration is started from the hot boundary with a value M = 
0.004, less than the eigen-value, GNO reaches unity a t  a temperature greater than 
the inlet temperature. For M = 0.006, greater than the eigen-value, the inte- 
grated GNO is less than unity a t  To = 800°K. It is found that the eigen-value is 
M = 0.0046. This corresponds to a flame velocity of 10 cm./sec. Curves for e 
US. T ,  e vs. x, and x os. T are readily calculated. From these curves the width of 
the flame may be estimated. The flame thickness for the nitric oxide flame was 
found to be about 0.5 cm. 

When the flame is propagated by a sequence or chain of reactions the mathe- 
matics is considerably more involved, since there is more than one condition to 
be satisfied a t  the cold boundary. It is necessary, as it was for the single-stage 
problem, to determine the solution in the neighborhood of the hot boundary 
before numerical integration toward the cold boundary is possible. An asymptotic 
form of the solution of equations 3.4.01, 3.4.02, and 3.4.03 is developed as 
follows (52, 53): 

In the neighborhood of the hot boundary, equations 3.4.01, 3.4.02, and 3.4.03 
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may be considered as linear in (T - TI), (yi - (y&), and (Gi - (GJ1) if certain 
requirements of analyticity are fulfilled. Then the functions T ,  yl, and Gi may 
be written: 

-0046 

- 

- 

- 

I I I I 

T = T~ + t k e - a k z  
k 

k 

(3.4.29) 

(3.4.30) 

(3.4.31) 

30 

FIQ. 5.  Determination of the eigen-value M for the nitric oxide flame, according t o  
Hirschfelder, Curtiss, Bird, and Spotz (53). 

The ffk are roots of the secular equation which will be formed from equations 
3.4.33 and 3.4.39, and the Uik and wik are the constants depending on the kth 
root. 

The t k  are arbitrary constants as far as the hot-boundary conditions are con- 
cerned. Therefore, let all tk = 0, except one, and substitute the asymptotic solu- 
tions 3.4.29, 3.3.30, and 3.3.31 into equations 3.4.01, 3.4.02, and 3.4.03. The 
expressions used for the equations of continuity, energy, and diffusion are de- 
termined by the substitutions and by considering the limit of the results of these 
substitutions as T --+ TI (as in equations 3.4.27). This is done since only starting 
values are desired in the neighborhood of T = T I .  The new continuity equation 
is then combined with the new energy equation and with the new diffusion 
equation to give an energy equation and a diffusion equation from which the 
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wi have been eliminated. Bearing in mind that not all Gi are linearly independent, 
and that the only linear relation among the u, is 

8- 1 

us = - uj 
j- 1 

the energy equation becomes 

where 

(3.4.32) 

(3.4.33) 

(3.4.34) 

(3.4.35) 

(3.4.36) 
i- 1 

8 

N = ci G, 
1 3 1  

(3.4.37) 

(3.4.38) 

Likewise the s - 1 diffusion equations become 
8- 1 

Q i  = (o;LAnSij + M d N i j  + Lij)uj (3.4.39) 
j -  1 

where 

(3.4.40) 

(3.4.41) 

(3.4.42) 

There now are s equations 3.4.33 and 3.4.39 and s - 1 of the unknowns ui. 
For the system to be consistent and a non-trivial solution to exist for these equa- 
tions, the determinant, 1 Sij I, of the system must equal zero. Since it is assumed 
that such a solution does exist, the permissible values of a are determined as 
roots of the secular equation 

I s i j  I = 0 (3 -4.43) 



THEORIES OF STEIDY-STATE FLAME P R O P ~ ~ G h T I O N  401 

where the S,, are as follows: 

S,, = a2X2 + CYXIVA- - Q 

s,, = L,  

S,, = Q, 

j = 1 , 2 ,  a * * ,  s - 1 

i = 1, 2,  a * *  , s - 1 

(3.4.44) 

(3.4.45) 

(3.4.46) 

(3.4.47) ( i =  1 , 2 , . * . s -  1 
1 3  = 1,2 ,  s - 1 sij = cY2Xn6ij + aMNij + Lij 

Only positive roots, f f k ,  are significant. The f f k  being known, the U,k and therefore 
the w i k  may be determined and an asymptotic solution in the neighborhood of 
the hot boundary obtained. 

In principle this solution can be extended by numerical methods of integrating 
toward the cold boundary to provide a complete solution. For a flame controlled 
by complex chemical kinetics this requires finding the value of M such that 
several cold-boundary conditions are simultaneously satisfied. The amount of 
computation required, even with the aid of high-speed computing machines, is 
considerable; hence the authors suggest another method of approximation. 

Let the approximate solution be characterized by an approximate mass flow, 
Af‘”’, and a set of functions G:”(X) which satisfy the known boundary conditions: 

GI.O’(O) = (GJo (3.4.48) 

and 

GIO’(1) = (GJl (3.4.49) 

may be estimated by the approximate methods previously discussed. By 
substituting G:” and M(’) into the energy equation 3.4.02 and integrating, ap- 
proximate T‘”(z) is obtained. Similarly, substitute the GIo’ and LV‘~) into the 
diffusion equation 3.4.03 and integrate to obtain the approximate compositions 
yjo)(z). Each set of approximate solutions thus obtained is in fact an exact solu- 
t,ion to a problem for which the chemical kinetics are given by 

(3.4.50) 

The deviation of these K :  from the Ki  obtained by substituting the T‘”(x) and 
yr)(z) into the actual rate expression, K = f(yj, T ) ,  is a measure of the accuracy 
of the solution. 

V. THERMAL THEORIES 

A .  The older thermal theories (SO, 33, 59, 66, 67, 69, 85, 90); the theory 
of Damkohler (32, 42) 

T i  = ignition temperature, 
za = point a t  which ignition occurs, 
Q = amount of heat transferred to fresh gas per unit volume per unit time, 
6, = distance in which the temperature rises from Ti to TI, 
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.$ = concentration of products, 
w = reaction velocity, 
t~ = mean reaction velocity, and 
nr = number of reactant molecules per unit volume. 

The earliest expression for flame velocity was derived by Mallard and Le 
Chatelier (85) and was based on thermal concepts. In addition to the assump- 
tions of constant pressure and of ignition temperature, the following assumptions 
were made: 

Assumption 1: The fresh gas is assumed to have a mean constant heat ca- 
pacity per unit volume, cpp, between To and TI .  The amount of heat which is 
transferred per unit time by heat conduction is then 

Q cPpvo(Ti = To) (4.1.01) 

Assumption 2: The temperature gradient a t  the point xi is proportional to 

Q’ k(T1 - Ti) (4.1.02) 

Here k is a constant which is proportional to the heat conductivity and inversely 
proportional to the distance, 6,) in which the temperature rises from Ti to TI. 

Since equations 4.1.01 and 4.1.02 each apply a t  the ignition point, Q = Q’ and 

(T1 - Ti). Then the heat flow by conduction is 

(4.1.03) 

Later modifications of this analysis introduce the velocity of the chemical 
reaction into the energy equation. Following Nusselt (59, 60)) let [ represent the 
concentration of products, so that the following conditions apply: 

(4.1.04) 

Assumption 3: Nusselt assumes that the degree to which the reaction has 

(4.1.05) 

proceeded is linear in x. Then 

d[/dx = [i/(xi - xi) = ti/& 
so that 

dT/dx = (TI - Ti)/& = [ (TI  - Ti)/hl(d[/d~) (4.1 .OS) 

In this way the unknown thickness of the reaction zone, 6,) is eliminated, but 
it now becomes necessary to find an expression for the progress of the 
reaction with respect to x. 

Assumption 4: Nusselt assumes that the reaction velocity w is constant; hence 
also, by assumption 3, the velocity of the gases in the reaction zone, v ,  is constant, 
since 

d[/dx = (d[/dt)(dt/dx) = W / V  (4.1.07) 
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Assumption 5: For no change in the number of moles, the velocity is expressed 

v Tvo/To (4.1 .OS) 

This is inconsistent with assumption 4, which holds v to be constant. Combining 
equations 4.1.06, 4.1.07, and 4.1.08, Nusselt writes 

(dT/dz)-=i = (Ti - Ti)wTo/&voTi (4.1.09) 

and since Q = Q’, where Q‘ = X(dT/dx),,,,, the final equation for flame velocity 
is writ ten : 

(4.1.10) 

The theories and expressions of Jouguet and Crussard (66,67, 69) and of Daniell 
(33) are essentially the same as those of Nusselt. 

Damkohler (32) derives an equation for flame velocity which resembles the 
equations of Nusselt, Jouguet and Crussard, and Daniell, but modifies the as- 
sumptions so that the theory is more realistic. Gaydon and Wolfhard (42) have 
outlined the following development of the ideas of Damkohler. 

Assumption 6: In place of assumption 2 Damkohler makes the approximation 
that the temperature gradient a t  the ignition point is related to the average 
temperature gradient across the reaction zone by a constant F. Then in place of 
equation 4.1.06, he writes: 

(dT/dx),zi = (TI - Ti)F/Gr (4.1.11) 

Assumption 7: In  place of assumptions 3 and 4 Daakohler defines a mean 

as a function of temperature as follows: 

= X(Ti - Ti)Tow/c,p(Ti - To)Ti[i 

reaction velocity ‘iir by the equation 

(4.1.12) 

where n, is the number of reactant molecules per unit volume initially present. 
Note that the contradiction of assumption 5 is avoided. 

The final equation is then written in the form 

X(T1 - Ti)F/Gr = cppvo(Ti - To) (4.1.13) 

or 

(4.1.14) 

It is characteristic of these thermal theories that the flame velocity varies as 
F(T1 - Ti)/c,p(Ti - T0)]1’2. A test of thevalidity of the theory is to compare 
the flame velocities of two mixtures for which every variable is the same except 
the heat conductivity. Such experiments were undertaken by Coward and his 
associates (29). They measured the flame velocities of mixtures of methane and 
air in which the atmospheric nitrogen was replaced by helium in one case and by 
argon in the other. The ratio of the flame velocities was found to be vo(He)/vo(A) 

2 
v o  FXD(T1 - Ti)/cppnr(Ti - To) 
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= 1.39. At the time of the experiments the heat conductivities of the mixtures 
had not been measured. The authors calculated values by the mixing rule from 
the values for the pure gases a t  0°C. The resulting figure for the square root of 
the ratio of the conductivities was almost tn.ice 1.39, and this was taken as evi- 
dence that thermal theories were inadequate for describing observed facts. Jost 
(62) points out, however, that the method used for calculating the conductivities 
of the mixtures a t  the ignition temperatures is not reliable. Bartholome (6, 8) 
also stresses the inadequacy of the method of calculation and reports actual 
measurements. He gives for the square root of the ratio of the heat conductivities 
the value 1.32, which is very close to the ratio of the flame velocities. Bartholome 
therefore concludes that this test of the adequancy of thermal theories holds for 
the thermal viewpoint rather than against it. 

B. The theory of Bartholorn6 (5, 6, 8, 10, 95) 

Ti = ignition temperature, 
n, = number of moles of reactant per unit volume, 
C = c ~ P R T / P ,  
p = heat emitted on reaction of 1 mole of reactant molecules, 

m = molecular weight, 

w = pv/RT, 
u = rate of reaction (moles of reactant per unit volume per unit time), 

E = activation energy. 

xn = total number of moles per unit volume at temperature T ,  

and 

Bartholome and Sachsse (5 ,  6 ,  95), in order to determine experimentally the 
variables which have the greatest effect on flame velocity, investigated the com- 
bustion of hydrogen, hydrocarbons, alcohols, ethers, nitroparaffins, and alkyl 
nitrates with air, oxygen, nitrous oxide, and their mixtures. Two observations 
on the effect of the velocity of the chemical reaction on the flame velocity of 
fuel-air mixtures (with the fuel-air ratio for the maximum flame velocity) are 
reported. Gases with large differences in octane number show practically no 
difference in flame velocity. Addition of knock-promoting and antiknock agents 
also has little effect. These results indicate a weak functional dependence of flame 
velocity on reaction velocity. Further, an increase in To by a factor of 5, that is, 
from 20" to 100°C., produces only a 30 per cent increase in flame velocity. Sachsse 
(94) showed that for the methane-oxygen flame, preheating to a temperature of 
1000°C. caused an increase in flame velocity by only a factor of 3. Since the re- 
action velocity must somehow increase exponentially with the temperature, the 
exponential increase must be compensated by a weak functional dependence of 
the flame velocity on the reaction velocity. 

Flame velocities for fuel-air flames were found to have a stronger dependence 
on T I .  Figure 6 is a plot of vo versus TI for a number of combustible mixtures. 
The points arrange themselves on several curves. The flame velocity increases 
rapidly with temperature, the more rapidly the higher the temperature. It is 
concluded that for these flames the velocity is essent,ially determined by the 
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final temperature. For hotter flames, such as those of hydrocarbons burning with 
oxygen, in which the end temperature is greater than -24OO0K., the flame 
velocity rises much faster than the final temperature TI. This is attributed to 
the fact that dissociation occurs to a perceptible degree a t  such temperatures and 
the hydrogen-atom concentration becomes the determining factor. BartholomB’s 
conception of these hot flames will be summarized in a later section. 

240 

200 

160 
cn 
\ 

,o 8 120 

FIG. 6 .  vo v e r w s  TI for flames of various fuels with air, oxygen, nitrous oxide, and their 
mixtures, as reported by Bartholome and Sachsse (5, 95). Curve I represents hydrogen 
flames; curve I1 represents the flames of gaseous hydrocarbons; curve I11 includes points 
for nitrogen compounds and nitrates, alcohol, ether, benzene, carbon disulfide, octane + 
(oxygen, nitrogen), and others; curve IV includes points for octane + (nitrous oxide, air) 
and for octane + (nitrous oxide, nitrogen). 

On the basis of the foregoing experimental observations Bartholome proposes 

Assumption 1: There is no change in the number of moles during the reaction. 

v = wRT/p  (4.2.01) 

Then by this assumption w is a constant. w is a version of the parameter M ,  which 
appears in other theories. 

a thermal theory of flame velocity (6, 8). 

The equation of state is written: 
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Assumption 2: Constant pressure is assumed. 
Assumption 3: It is assumed that there is no diffusion. Then the equation of 

(wR/p)[d(Tn,)ld4 + nPcp(T) = 0 (4.2.02) 

Assumption 4: Constant heat conductivity X is assumed. Furthermore, the 
quantity C is assumed to be constant. Then the energy equation is written as: 

continuity is written: 

X d2T dT  Q - - - w - + 
C dx2 da: necp(T) = 0 (4.2.03) 

Assumption 6: It is assumed that there is an ignition temperature, Ti, which 
is not less than 90 per cent of the final temperature TI. Supporting evidence for 
this assumption is of two kinds. First, neither the octane number of the fuel nor 
the presence of knock-promoting agents has any appreciable influence on the 
flame velocity. Since the octane number characterizes the tendency of a fuel-air 
mixture to explode when heated adiabatically to about 800-900°K., and since 
a theory of antiknock agents holds that such agents influence the beginning of 
the explosion in the same temperature region, the evidence suggests that effective 
reaction does not begin until a temperature a t  least greater than 900" is attained. 
Further evidence is based on an extrapolation of induction time measurements 
of Sachsse (93), which are interpreted to mean that heating of the gas across the 
flame occurs exclusively by heat conduction until a temperature very near TI 
is reached. 

If Ti is very near TI, the temperature gradient near TI is very steep, and the 
chemical reaction occurs over a very small distance which, if small enough, can 
be mathematically described as a point. On this assumption Bartholome holds 
that it is possible to replace, without great error, the exponential term of the rate 
expression, exp( -E/RT), with another function for which the equations are 
soluble. The form of the function depends upon the order of the reaction and is 
chosen with a view toward ease of solution of the equations rather than closeness 
of fit. The expression is written 

u = nPp(T) = nPPT" (4.2.04) 

where cp(T), the actual rate expression, contains exp(-EIRT) and j3 is a con- 
stant prescribed so that the functions fit a t  one point. 

Gaydon and Wolfhard (43) believe, on the basis of experimental data, that the 
assumption of a very high ignition temperature is not valid. They interpret their 
measurements of temperature rise for acetylene-air and acetylene-oxygen flames 
(42) to mean that the reaction commences below 1300°K. and not in the vicinity 
of 2100°K. Furthermore, they found luminosity due to emission of CC and CH 
bands beginning at  about 1300°K. 

For a reaction of second order, cr = 2 and q(T) becomes PT2. j3 is determined 
so that a t  T = 0.95 TI, exp(- EIRT) = pT2. A solution of the differential equa- 
tions 4.2.03 and 4.2.04 is obtained by dividing the flame zone into two regions. 
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Region I extendsfrom x = - cc , where T = To, to x = 0, where T = Ti. Region 
I1 extendsfrom x = 0 to x = 0 0 ,  where T = Ti. At x = f 00 , dT/dx = 0. x and 
dT/dx are continuous at x = 0. In region I the reaction velocity is zero and the 
solution for equations 4.2.03 and 4.2.04 is 

Tar = Tonro = pn,/RZn = constant (4.2.05) 

T - To = (Ti - To)t?wcz’x (4.2.06) 

In  region 11, setting u = n:pT2, equations 4.2.03 and 4.2.04 become, respec- 

(4.2.07) 

(1) 

tively, 

d(Tnr)/dx + pp(Tn,)’/wR = 0 

and 

d2T/dx2 - (wC/X) dT/dx + qP(Tn,)’/A = 0 (4.2 .OS) 

Equations 4.2.07 and 4.2.08 are readily integrated for the given boundary 
conditions to give 

(11) (T - Ti) = EeB‘z-g’Ei[-B(x - K ) ]  (4.2.09) 

where 

B = wC/X, E = qw2R2/XBp2, K = -wR2Zn/pp2nr, 

ei [ t ]  = / (e‘/lt) dt (4.2.10) 

The parameter w is determined by the extra condition that dT/dx be continu- 
ous at  x = 0. Imposing this condition on equations 4.2.06 and 4.2.09, the de- 
termining equation is obtained: 

Ti - To = Ee-BKei[BK] - E/BK (4.2.11) 

e,[BK] is developed into a series which is broken aff after the second term and 
substituted into equation 4.2.11. The resulting equation is solved for v i  t ’o give, 
for a second-order reaction: 

vi = (TI - To)TipXnr/(Ti - To)CZn (4.2.12) 

Similarly an expression for v: may be found for a = x, a case which will be 

(4.2.13) v o  = (Ti - To)TipX(R/p)i’2(n,/Zn)”2/(Ti - T0)C 

illustrated below. The result is 
2 

For a = 1 the expression is 

v i  = [(Ti - To)/(Ti - To) - l]T;@XR/Cp (4.2.14) 

Bartholome calculates the flame velocity for a stoichiometric mixture of methane 
and air. Fbllowing Sachsse (63, 93), it is assumed that the rate is proportional to 
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the number of collisions between methane molecules and oxygen atoms. Sachsse 
has given the overall activation energy so that the constant fi  is determined. 
In the stoichiometric mixture [Os] = 2[CH4], so that [O] is proportional to 
d m .  Hence 01 = 36 and equation 4.2.13 is used for the calculation. Bar- 
tholom6 reports a calculated value for oo of 105 cm./sec. under conditions for 
which he reports an experimental value of 49 cm./sec. 

To test the validity of the assumptions regarding ignition temperature, Bar- 
tholom6, Dreyer, and Lesemann (10) solved the differential equations 4.2.02 
and 4.2.03 without mathematical simplifications, using a differential analyzer 
referred to as the "Integrieranlage IPM-Ott" (111). The rate expression n,"q(T) 
was taken from the work of Sachsse (93). 

w is obtained as an eigen-value which must be determined by systematic trials. 
A likely value is assumed and introduced into the equations. The computer is 
allowed to draw a solution T(x) for that value of w. This will in general not fit 
the boundary condition that at  T = T1, dT/dx = 0, but either exceeds the value 
Tl or bends off before reaching T1. For the proper value of w the boundary con- 
ditions will be met. 

Bartholom6 defines ignition temperature in a stationary flame as the point 
a t  which the curve T(x) has an inflection. The T(x) curve obtained gives Ti = 
1800°K = 4 0  per cent TI. This is a lower value than that which has been esti- 
mated in the earlier papers (6, S), but it is the opinion of the authors that it is 
nevertheless so high that the conclusions drawn from the approximate solution 
using the high value are valid. The value for the flame velocity as obtained by 
this computer method is 207 cm./sec., about twice the value of 105 cm./sec. 
obtained from the approximate analytical solution and about four times the 
experimental value of 49 cm./sec. 

C. The theory of Emmons, Haw, and Strong (38) 
pr = density of reacting mixture, 
Q = enthalpy change of reaction, 
a = X / c p p  = thermal diffusivity, 
a7 = reaction rate for first-order reaction, and 
a,, = rate constant. 

Emmons, Ham, and Strong propose a thermal theory of flame propagation, 
the equations of which are solved by the use of the Harvard Mark I calculating 
machine. 

Assumption 1 : Pressure is assumed constant. 
Assumption 2: Heat conductivity, A, is assumed constant. 
Assumption 3: Specific heat, cp ,  and hence enthalpy change, Q, are taken to 

be independent of composition and temperature. 
Assumption 4: Density is assumed constant. In  view of this assumption the 

velocity of flow is also constant, and it becomes unnecessary to solve the equa- 
tions for conservation of mass and of momentum. 
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Assumption 5: A first-order reaction rate is assumed, for which the reaction 

ar = prQe-E’RT (4.3.01) 
rate is given by 

where pr varies from pro a t  x = 0 to  0 a t  x = 0 0 .  

The sole equation to be solved, the energy equation, is written 

-Xd2T/dx2 + d(pvc,T)/dX + a,& = 0 (4.3.02) 

The boundary conditions are as follows: a t  x = 0, T = To, pr = pro; a t  x = 0 0 ,  

dT/dx = 0, pr = 0. 
By setting ar = v(dp,/dx), substituting into equation 4.3.02, and integrating, 

using the boundary conditions a t  infinity, one obtains: 

(4.3.03) -XdT/dx f PVC,T + vQpr = pvcPT1 

At the origin x = 0, equation 4.3.03 becomes 

-XdT/dx Iz=O + pvc,(To - Ti) + vQp,o = 0 (4.3.04) 

which relates the final temperature to the initial temperature and the initial 
temperature gradient. 

Now introduce the variables 

17 = (a/v)(dT/dx), 7 = %X/pcpv2, E = Qpro/cpp (4-3.05) 

Then by combining equations 4.3.01, 4.3.02, 4.3.04, and 4.3.05 the following 
working equation is obtained: 

dq/dT = 1 - yeWEiRT(q + TI - T)/q (4.3.06) 

where, according to equation 4.3.04, 

70 = E - (Ti - To) (4.3.07) 

For a given qo and To there is a unique value of y which will produce a curve 
which satisfies the boundary condition at infinity. y is regarded as specifying the 
flame speed of the mixture. 

y is found by numerically constructing the solution to  equation 4.3.06. Solu- 
tions are constructed for chosen values of y and Ti, that is, the solution curve is 
produced by numerical integration starting a t  T = TI. After the integral curves 
for various y values have been constructed, To and qo may be chosen and the 
corresponding y obtained by interpolation. Tables giving B for various values of 
y, with Ti - T as the argument, are presented. 

Figure 7 is a plot, for several heating values, 6, of flame velocity expressed as 
~ / ( a ~ a ) ~ ’ ~ ,  as a function of temperature gradient expressed as (a/ao)”2(dT/dx). 
For mixtures of high heating value the flame speed is constant over a consider- 
able range of initial temperature gradient, so that for such mixtures there is a 
most probable flame velocity. For lower heating values, one velocity becomes 
as probable as another. Emmons suggests that the non-constant flame speed 
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TEMPERATURE GRADIENT 

FIQ. 7. Flame velocity as a function of temperature gradient for several heating values, 
a8 calculated by E m o n e ,  Harr, and Strong (38). 

portions of the curve are significant in the explanation of transitions from defla- 
gration to detonation or extinction. 

D. The theory of Bechert (11, 12, 13, 14, 16, 16) 

respectively, 
n,, np = number of molecules per unit volume of reactant and product, 

M = molecular weight of mixture, 

a, = molecular radius of reactant, 
E = activation energy, 
Z = rate of reaction, 
k = Boltamann’s constant, and 

q’ = heat of gross reaction per molecule of reactant. 

m,, m, = mass of molecule of reactant and product, respectively, 

The Bechert theory of flame propagation is classed as thermal, since no diffu- 
sion terms are included in the continuity and energy equations. Bechert takes 
diffusion processes into account without introducing terms directly into the 
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equations by determining E from one measured value of vo. Detailed accounts of 
the author's work with respect to reactions between two particles of equal size 
are given in references 12 and 13. Reference 11 gives a concise review of the 
most important results. References 14, 15, and 16 discuss the application of the 
theory to hydrocarbon combustion. 

By an approximation method an expression for vo in continuous analytical 
form is obtained as a function of experimental data. 

Assumption 1: Pressure is assumed constant. 
Assumption 2: Diffusion is neglected, except that it is taken into account in 

Assumption 3: The specific heat a t  constant pressure is assigned an average 

Assumption 4: The heat conductivity is assumed to  be proportional to  the 

Assumption 5: A single overall reaction is assumed. 
Assumption 6: A reaction between two similar particles is assumed. 
By assumptions 2, 5, and 6 the equation of continuity is written: 

the empirical determination of E from an experimental value of vo. 

constant value E,.  

square root of the temperature, so that X = Xo2/T, where Xo is a constant. 

-d(n,v)/dx = 2 2  (4.4.01) 

By assumption 6 the reaction rate is written: 

z = 2(2aJ2 n 9 d m r  (4.4.02) 

By assumption 2 and the equation of state, the equation of energy is written 

1 XdT/dx = PO DO [IT: co dT + RT/M - RTo/Mo 

Equations 4.4.01, 4.4.02, and 4.4.03 are combined to  give 

4X(2ar)'n; dB e-EikT 

M Mo 

mr (4.4.04) 

P O U O  [lT: cy d T  + (n, v - n,ovo) + 
The following abbreviations are introduced: 

T = E/kT; y = r - 71;  w = n,Mo/MD1; m* = nP4/nro 

p = Ml/Mz; A = 4 ( 2 ~ , ) ~ 1 / n 7 m , ~ ~ / k ~ ' * q ~ ~ ~  

D, = [PO@/~TO + qrnro - (XdT/dx)~/v~l/q'~~ (4.4.05) 

(XdT/dx)o is taken equal to zero. Using this boundary condition, assumptions 



412 MARJORIE W. EVANS 

1, 3, and 4, and the abbreviations of 4.4.05, the differential equation 4.4.04 is 
written in final form: 

A m* + 1 .e-,l 

(4.4.06) e-'w2 
i Y  W dw - - - -- 

dy r1 + y -I- i i  

(Tl + Y)(W - Y) W(P - 1) 
'11 - (TI + y)(m* + P ) ( 1 -  n/TO) 

The mathematical problem is to determine the value of the parameter oo such 
that two sets of boundary conditions are satisfied: namely, w = wo for y = yo 
and w = 0 for y = 0. 

Bechert plots the direction field of the first-order differential equation 4.4.06 
and determines the general properties af the equation. From the direction field 
is deduced the curve which fits the boundary condition a t  w = 0, y = 0 and 
which, therefore, for the proper value of vo, also fits the boundary conditions a t  
w = wg, y = yo. Next, as an approximate solution a function is constructed 
which satisfies the boundary conditions and possesses the properties of the curve 
sought in good approximation. The substitution of this approximate solution 
into the differential equation gives an approximate formula for vo. 

Assumption 7: It is assumed that TO S 1 and T~ S rl. (r0 is of the order of 
30, T~ of the order of 5.) The rate of chemical reaction is assumed to be small 
except near rl, i.e., near the hot boundary. Hence the second term a t  the right 
of equation 4.4.06 is neglected except a t  high values of r .  

From a consideration of the plot of the direction field and in view of assump- 
tion 7, the following function is chosen as a representation of the desired curve 
in the w,y plane: 

wo = {dl - b ( l  + TI)] - b ~ l l e ~  + b(y + TI) (4.4.07) 

where b = 1 - r1/ro0. 
The substitution of the approximate solution 4.4.07 into equation 4.4.06 gives 

a value of the parameter vo. Different values of vo are found, depending upon the 
choice of the point where the approximate solution is made to satisfy exactly 
the differential equation. If the approximate solution is a good approximation, 
the different values will be nearly equal. The following expression for the flame 
velocity is given: 

Equation 4.4.08 is compared with the experimental values for the velocity of 
the ozone flame as given by Lewis and von Elbe (75). E and a, are determined 
from two experimental values of 00. Table 2 shows selected experimental values 
for vo,  together with values calculated by Bechert and by Lewis and von Elbe. 
The values enclosed in parentheses are those used for the calculation of E and 
a,. 
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I i 333 

The theory is applied to the combustion of compounds containing carbon, 
hydrogen, and oxygen (14, 16). It is assumed that in the region of an excess of 
air the entire fuel is burned and that in the region of an excess of fuel the entire 
quantity of oxygen is consumed. Furthermore, it is assumed that reaction occurs 
upon collision of a fuel molecule and an oxygen molecule. Upon these assump- 
tions an expression for va is obtained by a procedure similar t o  that leading to  
equation 4.4.08. The order of magnitude of the flame velocity and its qualitative 
dependence upon mixture composition are given correctly. No systematic com- 
parison of theoretical and experimental flame velocities is given. 

185 

108 

TABLE 2 

Comparison of V Q  for ozone-oxygen mixtures measured by Lewis and oon Elbe (76) with values 
calculated by Bechert (11,12,15) and by Lewis and von Elbe (76)  

m* To 

3.054 

1.497 

1.016 

‘K. 
300 
361 
427 
301 
441 
302 

DO (OBSEBVED) 

cm./sec. 

55.0 
100.0 
158 
141 
435 
160 

~ 411 615 
468 I 747 1 , 

I no 1 0  

Calculated 
(Bechert) 

cm./scc. 

71.7 
108 

(158) 
238 
467 
369 
609 

(747) 

I Error 

I per ccnt 

30 
1 8  

69 
7 1 130 

-1 

VI. DIFFUSION THEORIES 

A .  The theory of Tanford and Pease (104, 105, 106, 107) 

ni = concentration of ith component, 
n, = concentration of combustible, 

A’ni = rate of reaction of ith component, 
qi = mole fraction of ith component, 
qp = mole fraction of potential product, 
p i  = equilibrium partial pressure a t  flame front of i t h  component, 
E = degree of completeness of the chemical reaction, varying from 0 in 

the unburned gas to  1 in the burned gas, 
Q = heat of reaction per gram of unburned gas, 
E = energy of activation, 
ki = rate constant appropriate to the ith reaction, 
L = molecules per unit volume a t  293’K., 

N = Avogadro’s number, and 
6 = width of flame zone, 

e ,  = T,/T,,. 



414 MARJORIE W. EVANS 

Tanford and Pease assume that for certain flame reactions the rate of diffu- 
sion of active centers into the unburned gas determines the magnitude of the 
flame velocity. Their work is in three parts. The first part (106) gives calcula- 
tions of equilibrium atom and free-radical concentrations in moist carbon mon- 
oxide flames. The results indicate that the equilibrium concentration of the 
hydrogen atoms is an important factor in determining the flame velocity. Tan- 
ford (104) presents calculations to establish the relative importance of diffusion 
and heat conduction in creating the hydrogen atoms in the flame zone. The con- 
clusion is that diffusion is the controlling process. The third paper (107) develops 
an equation for flame velocity based on this conclusion. 

Equilibrium concentrations of OH, H, and 0 a t  the equilibrium flame tem- 
peratures are calculated for moist mixtures of carbon monoxide, oxygen, and 
nitrogen, and values for flame velocity given by Jahn (55) are plotted against 
these concentrations. The uo-[H] plot gives a smooth curve, suggesting that vo 
is a function of hydrogen-atom concentration, while the uo-[OH] and vO-[O] plots 
give scattered points through which no smooth curve can be drawn. It is there- 
fore proposed that burning occurs because free radicals-and in particular for 
the carbon monoxide reaction, hydrogen atoms-are continuously supplied to 
the unburned gas. 

Two extreme processes are proposed by which radicals appear throughout the 
flame zone, and an evaluation of the relative importance of the two mechanisms 
is made (104). The mechanisms are: (1) local production by thermal dissocia- 
tion, the concentrations being functions of temperature and hence dependent 
upon the heat conduction process; (2)  supply by diffusion from a single point, 
that a t  which the reaction has reached equilibrium. Evaluation is made for two 
mixtures, one consisting of 60 per cent carbon monoxide (containing 1.35 per 
cent water), 39.4 per cent oxygen, and 0.6 per cent nitrogen, the other consist- 
ing of 40 per cent hydrogen, 24 per cent oxygen, and 36 per cent nitrogen. 

[HI as a function of x is evaluated for the first mechanism by setting up an 
energy equation which upon solution gives T as a function of x. From the T(x) 
curve the maximum possible values of [HI as a function of x are calculated. 

Assumption I : Pressure is constant. 
Assumption 2: X and c, are constant. 
Assumption 3: The chemical reaction term is expressed in terms of deldx, 

with the result that T is the only dependent variable in the equation. Two lim- 
iting functions for de/dx are used: (a) all heat is released a t  the flame front, 
x = 0, the flame front being defined as the point where the combustion has 
reached equilibrium, so that de/dz is zero except a t  x = 0; ( b )  the chemical re- 
action proceeds evenly across the zone, so that de/dx is a constant. The true 
curve for T(x) is assumed to lie halfway between the solutions obtained for (a) 
and (b). 

Assumption 4: In order to determine the value of de/dx under the conditions 
of assumption 3(b) i t  is necessary to  assume a thickness of the flame zone, 6. 
Thicknesses of 0.01 cm. for the carbon monoxide flame and of 0.005 cm. for the 
hydrogen flame are assumed. 
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Assumption 5: The local equilibrium concentration of hydrogen atoms due 
to thermal dissociation is calculated by assuming a maximum value for [H2] at  
every point. For the moist carbon monoxide flames this concentration is taken 
to be the equilibrium concentration due to water dissociation at the flame front. 
For the hydrogen flames it is assumed that the initial [Hz] remains unchanged 
up to a distance of 0.001 em. from the flame front. 

The energy equation is written: 

d2T/dx2 + (Mc,/X)(dT/dx) - (M&/X)(de/dx) = 0 (5.1.01) 

The gas is here assumed to move toward x = 0 from z = 00. 

On the basis of assumptions 3, 4, and 5, equation 5.1.01 is solved and [HI is 
calculated as a function of x. Next a calculation is given of the Concentration of 
hydrogen atoms, as a function of x, due solely to  diffusion from the point of 
completed reaction. 

Assumption 6: All of the combustion zone is assumed to  be at a constant mean 
temperature, T, = 0.7T1. Therefore, since the gases are assumed to be ideal, 
p = pm and v = v, = voe,. This assumption has the further consequence that 
the expression for rate of chemical reaction contains only concentration terms as 
variables and is not temperature-dependent. The rate of reaction is written as 
dni/dt = A’nl. A’ by this assumption is a constant independent of x. 

Assumption 7:  The diffusion coefficient has a constant value D, = Do&, 
where Do is the diffusion coefficient for hydrogen atoms into unburned gas a t  
room temperature. 

Assumption 8: In reference 104 the chemical reaction term in the continuity 
equation is written as A‘ni, regardless of the order of the processes involved, in 
order to  make the continuity equation linear. For second-order processes, the 
rates relative to first-order processes are estimated and are taken into account 
in the first-order term. In reference 105 a numerical solution is made of a non- 
linear continuity equation containing terms for first-order and second-order 
reactions. Results are similar to those obtained from the approximated solution, 
which is the explicit solution of the linear equation. 

Assumption 9: It is assumed that for both hydrogen and carbon monoxide 
combustions, only two reactions are fast enough to  have an effect on the hydro- 
gen-atom concentration. They are 

(4 H + O2 + M + H 0 2  + M, and 

(b) H + H + M + Hz + M 

where M represents a third body. 

mean value. 

written 

Assumption 10: The mole fraction of oxygen molecules, qoa, has a constant 

Making use of the appropriate assumptions, the linear continuity equation is 

(5.1.02) D,(d2ni/dx2) + v,(dnJdx) + A’ni = 0 
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Using the boundary conditions ni = nil for 1: = 0 and ni = 0 for x = w ,  the 
solution of equation 5.1.02 is 

n, = nil exp( - B:vrnx/Drn) (5.1.03) 

where 

B: = x[l + (1 - ~A’D,/U~)’’~] (5.1.04) 

B: is evaluated according to the reactions of assumption 9, and the hydrogen- 
atom concentration as a function of x is computed by means of equation 5.1.03. 

This distribution curve is compared with that obtained by assuming the source 
of hydrogen atoms to be only thermal dissociation. It is found that the partial 
pressure of hydrogen atoms from thermal dissociation falls to less than 10 per 
cent of that due to diffusion at a distance of x 0.004 cm. and T 2330°K. 
for the carbon monoxide flame, and a t  x S 0.003 cm. and T E 1760°K. for 
the hydrogen flame. On the basis of these results a theory of flame velocity is 
developed (107) on the concept that the determining factor is the diffusion of 
active particles, chiefly hydrogen atoms, from the point a t  which the combustion 
has reached equilibrium. 

In  addition to assumptions 1, 2, 6 ,  7, and 8, the following assumptions are 
made for the general theory: 

Assumption 11: The rate of formation of the product at any point can be 
written as a sum of a number of terms, one for each effective radical or atom, 
each one being of the first order with respect to the radical and to the combustible. 

Assumption 1.2: The only species involved in the process, in addition to  the 
active particles, is the combustible, for which the concentration is represented 
by nr. A mean value independent of x is assigned to n,. 

Assumption 13: Chain branching is assumed not t o  occur. 
On the basis of assumptions 11 and 12 the rate of formation of combustion 

product a t  any time is written: 

d(product)/dt = kininnr (5.1.05) 
6 

The total rate of formation of product may be computed from the initial composi- 
tion of the mixture and equated to equation 5.1.05 integrated over the entire 
range. 

Lq,vo = la kinin, dx 
1 

(5.1 .OB) 

Substit’uting equation 5.1.03 into equation 5.1.06 and integrating gives: 

Lqp 210 = ki n, nil Drni/B: urn (5.1.07) 

Upon replacing nil with Lpi/Orn and making other substitutions called for by 
assumptions 6 and 7, the expression for vo becomes: 

i 

(5.1.08) 
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Equatioi: 5.1.08 is used to  calculate the flame velocities of carbon monoxide 
mixtures. In accordance with assumption 12, n, is assigned the mean value 
0.7qc,/O,. pp is the mole fraction of carbon monoxide or twice the mole fraction 
of oxygen molecules in the initial mixture, whichever is the smaller. It is assumed 
that oxygen atoms are not involved in the reaction, so that only hydrogen atoms 
and OH radicals are considered. Values of the diffusion coefficient are assumed 
not to vary from mixture to mixture. The flame velocity of carbon monoxide 
mixtures does not tend to zero with free-radical concentration (106). It is there- 
fore assumed that there is a constant contribution to  the flame velocity inde- 
pendent of radical concentration and this constant (17 cm./sec.) is added to  
equation 5.1.08. Then the form of equation 5.1.08 appropriate for the burning 
of carbon monoxide is 

Flame velocities for the mixtures varied from 25 t o  106 cm./sec. The calculated 
00 was never in error by more than 25 per cent and in general the error was much 
lower. 

Equation 5.1.08 was applied to the combustion of hydrogen in a similar way, 
with results of the same degree of accuracy. 

Hoare and Linnett (54) believe that the results of Jahn on the variation in 
flame velocity with composition of carbon monoxide flames can be accounted 
for by a thermal theory as adequately as by the theory of diffusion of radicals. 
They assume that the reaction becomes explosive a t  an ignition temperature 
Ti, when the rate of heat release reaches a value H .  On the basis of the kinetic 
results of Hadman, Thompson, and Hinshelwood (47) H is written 

(5.1.10) 

The quantity (Ti - To)/(T, - To) is calculated as a function of composition 
for various values of H / k  and E ,  and the results are plotted against vo. vo increases 
with (Ti - To)/(T, - To). This correlation is taken as equally good evidence 
for a thermal theory as is the correlation of uo and hydrogen-atom concentration 
for a diffusion theory. 

Dugger (37) compares his experimental curve of flame velocity of propane-air 
and ethylene-air flames versus initial temperature with vo-To curves calculated 
from equation 5.1.08. Only pi, Di, and L are assumed to be temperature-de- 
pendent. Dugger’s expression for predicting the relative effect of temperature 
on flame speed according to  the Tanford-Pease theory is 

vo a d ( 2 k i p i D i , , ) T i T ; 1 . 3 3  (5.1.11) 

where Di,r is the relative diffusion coefficient of the rth radical with respect to 
other radicals. Figure 4 shows the results for the Tanford-Pease theory as well 
as for the Zeldovich-Frank-Kamenetsky theory. The effect of initial tempera- 
ture on the flame velocity appears to be explained equally well by the two 
theories. 
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Simon (99) finds the theory to be consistent for thirty-five hydrocarbons the 
flame velocities of which were reported by Gerstein, Levine, and Wong (44). 
Equilibrium concentrations of H, 0, and OH radicals were calculated a t  com- 
positions giving maximum flame velocity. The sum of the active particle con- 
centrations each multiplied by the respective relative diffusion coefficient was 
plotted against vo, as shown in figure 8. The dotted curve is a similar plot given 
by Linnett and Hoare (82) for ethylene-oxygen-nitrogen mixtures. Equation 
5.1.08 is modified for application to hydrocarbons by including a term T ,  for the 
total number of moles of water and carbon dioxide which form per mole of hydro- 
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FIG. 8. v o  versus relative atom and radical concentrations as calculated by Simon (99). 
The solid line includes points for normal alkanes, branched-chain alkanes, normal alkenes, 
branched-chain alkenes, alkynes, benzene, and cyclohexane in air. 

carbon, and by assuming that H, OH, and 0 are equally effective as chain car- 
riers. Then equation 5.1.08 becomes: 

From equation 5.1.12 k is found for all hydrocarbons except ethyleiie to have 
a value of 1.4 =t 0.1 X 10" mole sec. This constancy of k suggests that 
the rate constants for the oxidation of the hydrocarbons either are the same or 
are unimportant in the mechanism of flame propagation. 
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Simon points out that a correlation between flame velocity and flame tem- 
perature exists for these hydrocarbons, and that a flame mechanism which de- 
pends strongly on flame temperature might give an equally good correlation 
with flame speed. Therefore a thermal mechanism may not be ruled out. 

Badin, Stuart, and Pease (4) calculate ratios for the flame velocities of stoichio- 
metric mixtures of 1,3-butadiene with helium air and with nitrogen air at 1 
atm. and 0.5 atm. pressure, assuming that the diffusion of hydrogen atoms is 
the controlling factor. Table 3 gives the observed and calculated results, as well 
as results calculated by Ifanson according to  his theory (89). 

TABLE 3 
Comparison of experimentally determined flame velocity ratios for  1 ,$-butadiene with nitrogen 

air and helium air ,  as measured by Bad in ,  Stuart ,  and Pease ( 4 ) ,  wi th  their Calculated 
ratios and those of Manson (89) 

RATIO uo(1 ATM.)/UO (0.5 ATY.) PATIO vo(He)/oo(Nz) I- 
Calculated Calru- 
and Pease) (Manson) 

/Observed1 (Tanford I lated 11 Observed c & ! ~ ~ ~ d  Calculated I land Pease)/ 

p = 1 atm.. . . . . . . 3.3 3.3 3 . 1  INitrogen a i r . .  . . . . 0.81 0.88 0.86 
p = 0 . 5 a t m  . , . . . . .  1 3 . 4  1 3 .1 1 3 . 1  /jHeliurnair . . . . .  . . I  0.80 1 0 . 9 0  1 0 . 8 7  

6 =  
P =  
A =  

d =  
z =  
m =  

w =  

B. The theory of Van Tiggelen (108, 109) 

probability of the occurrence of a chain-branching reaction, 
probability of the occurrence of a chain-breaking reaction, 
mean free path, 
mean velocity of molecules, 
mean linear displacement of a center, 
number of collisions, and 
molecular weight of active centers. 

The theory of flame propagation proposed by Van Tiggelen emphasizes chain 
branching as the chief reaction mechanism, and an expression for flame velocity 
is obtained by assuming that the velocity is limited by the rate of chemical re- 
action rather than by heat conduction. 

Assumption 1: For certain slow flames, such as the burning of methane in 
air, the velocity of the reaction is not great enough to keep up with the heat 
exchange, so that the rate of reaction determines the flame velocity. Of course, 
for reactions sufficiently rapid, such as the combustion of hydrogen, heat con- 
ductivity may play a preponderant role, since the reaction rate is sufficiently 
elevated to cause reaction immediately upon attainment, by means of heat con- 
duction, of the necessary reaction temperature. 

Assumption 2: The reactions are propagated by chain branching. Van Tig- 
gelen follows Semenov (96) in stating that the active centers which propagate 
the chains undergo in the course of a molecular collision either (a) a branching 
reaction with probability 6, ( b )  a chain-breaking reaction with probability 0, or 
(c) without modification of the total number of active centers, a simple elastic 
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collision or a reaction of simple propagation of the chain. The condition of burn- 
ing is established when the probability of branching exceeds that of breaking, 
i.e., 6 2 p .  However, that condition, which depends upon the temperature, the 
concentration of components, and the pressure, is not necessarily sufficient. 
The condition of burning can be established only if the region is sufficiently ex- 
tended so that the active centers undergo on the average a t  least one branching 
reaction. The region might, for example, be limited by walls on which the cen- 
ters are destroyed, or by a transition to a cooler region in which the condition 
6 - p 2 0 does not hold. 

Assumption 3: The total pressure and the partial pressures of the reactants 
are known a t  the cold boundary and are assumed constant. 

Assumption 4: The temperature T ,  in the flame zone is assumed constant 
with a mean value between To and TI .  The complete T - x  curve is discontinuous, 
with a value of To from x = - 00 to x = 0 and a discontinuous jump to T,n 
at x = 0. Likewise the velocity v is discontinuous a t  x = 0, jumping from vo 
to vm, where v ,  is the constant mean value a t  x > 0. Assuming ideal gases and 
no change in the number of molecules upon reaction, the equation of state and 
the conservation of mass give the following relation: 

V O / V ~  = P ~ / P O  = TdTm (5.2.01) 

Assumption 5:  The molecules are assumed to be equal in size and weight, so 
that D = Xw/3. 

If X is the mean free path and d the mean linear displacement which a cen- 
ter can effect in the region where the condition is realized, the number Z of the 
collisions undergone during the displacement is given by Smoluchowski (100) : 

Z = 3ad2/4X2 (5.2.02) 

In order that maintenance of the critical number of active centers be assured, 
the following condition, derived from equation 5.2.02 and assumption 2, must 
he realized: 

3ad2(6 - @)/4A' = 1 (5.2.03) 

The displacement d effected by diffusion in a time t is given by the approximate 

(5.2.04) 

expression : 

d2 = 2Dt = 2Awt/3 

The mean velocity of the molecules, w, is expressed as follows: 

w = 2 4 2 R T n , / 7 m  (5.2.05)  

The propagation of the flame is governed by diffusion of the active centers. 
If the centers have diffused a distance d ,  the flame shifts a distance fd, essentially 
equal t o  the mean value of the projection of d on the perpendicular to the flame 
front, and the velocity of motion is fd/t. f can be given an approximate value of 
2/n .  



THEORIES O F  STErlDY-STATE FLAME PROPAGATION 42 1 

By combining equations 5.2.03, 5.2.04, and 5.2.05 the velocity of displacement 

V, = fd/t = 4 d 2 R T m ( 6  - P)/T& (5.2.06) 

Since the flame velocity is measured with respect to the fresh gas, combining 
equations 5.2.01 and 5.2.06 gives the expression for VO: 

(5.2.07) 

For 6 = 0, equation 5.2.07 gives zero for the flame velocity. Thus the expres- 
sion anticipates the existence of limits of concentration, outside of which the 
temperature of combustion is not sufficient for the mean temperature T,,, to  
exceed the temperature required for inflammation. 

If one neglects p for mixtures the compositions of which are not near the lim- 
its, a calculation of vo is possible from a knowledge of T ,  and 6. The equation is 
applied in this way to the methane-air flame. 

Assumption ti: The branching reaction occurs a t  the expense of the radical 
CHI, and the partner in the branching reaction is 02. The energy of activation 
of the reaction is taken to  be 40 kcal. The probability 6 is written 

(5.2.08) 

of the flame front in a gas a t  a temperature T ,  becomes 

vo = 4 T o d 2 R ( 6  - P)/7r2/3mTm 

6 = [02] exp ( -40 ,000 /RTm) /p  

so that the expression for flame velocity for this reaction becomes 

vo = 4To2/2R[02] exp ( - 4 0 , 0 0 0 / R T m ) / a 2 / 3 ~  (5.2.09) 

From observed values of vo for various mixtures of methane and air, the tem- 
perature T ,  is computed and a curve for T ,  versus [ 0 2 ] / p  obtained. The mix- 
tures contained oxygen in excess with respect to methane, and it is assumed that 
T ,  depends uniquely on the percentage of methane and varies linearly with it. 
This assumption is suggested by the experimental data. Using the temperature- 
composition curve, flame velocities in mixtures of methane with air having a 
reduced oxygen content are calculated. The results compare favorably with the 
experimental values of Coward and Hartwell (28).  

C. The theory of Gaydon and TVoZfha.rd (42, 43) 

6r = thickness of luminous zone between points of maximum rate of change 

6, = total thickness of luminous region, 
d = mean linear displacement of center, 
V = diffusion velocity, 
n, = number of reactant molecules per unit volume in the unburned gas, 
1~ = mean reaction velocity, 
T ,  = ignition temperature, and 
xi = point at  which ignition occurs. 

of luminosity, 

According to Gaydon and Wolfhard the diffusion of atoms or radicals from 
the burned gas into the unburned gas is of major importance in the propagation 
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of hot flames, such as those of hydrocarbons with air or oxygen in mixtures 
nearly stoichiometric. They point out that heat transfer may also play a role, 
since the reactions involving atoms or radicals may require an activation en- 
ergy. Furthermore, while diffusion may be the limiting process in hot premixed 
flames, other reactions for which heat transfer is important may be rate-deter- 
mining for other systems. 

Assumption i: The ignition temperature T ,  is the point of the beginning of 
marked exothermic reaction. It is determined by plotting the experimental 
T-x curve and comparing this curve with the calculated curve for the rise of 
temperature due solely to heat conduction back from the burned gases. The 
ignition point x, is located a t  the point at which the observed and calculated 
curves show appreciable divergence. For mixtures of acetylene with air and 
with oxygen T ,  is found to have a value of about 700-800°C. 

Assumption 8: The temperature in the flame zone is taken to have a constant 
average value T,, equal to (T1 + T, ) /2 .  There is a discontinuity of T ,  - To 
at x = x,. 

Assumption 3.  The velocity of the gases in the flame zone is taken to have a 
constant value urn. There is a discontinuity of v, - vo a t  5%. Assuming ideal gases 
and no change in the number of molecules in the course of the reaction, the 
equations of state and conservation of mass give: 

urn = voTm/To (5.3.01) 
Assumption 4: The thickness of the luminous reaction zone 61, as measured 

between points of maximum rate of change of luminosity, is determined for sev- 
eral mixtures. The thickness of the total luminous region, a,, is somewhat greater 
than all so that 6, E Nsl .  6, is taken to be the thickness of the reaction zone, as 
suggested by the measurements described under assumption 1, which show that 
the beginning of the exothermic reaction corresponds fairly well to the point at  
which the first impression of light is obtained. The time required for the gases 
to traverse the zone of thickness 6, is then t, = &/urn. Measurements were made 
forthemixtures(a) CzHz + 2.5O2 + 9.4N2, ( b )  CzHz + 2.502, (c) CzHz + 2.502 + 
9.4A, and (d) CIHlo + 6.502 + 24.5N2. 

Assumption 5: The diffusion of hydrogen atoms is assumed to  be of major 
importance. Do is the value for the diffusion of hydrogen atoms into a mix- 
ture of carbon dioxide and water a t  standard temperature and pressure and 
D,, the constant value of the coefficient in the flame zone, is expressed by 

Assumption 6: It is assumed that the ignition point x, is the limit of diffusion 
of the hydrogen atoms. An atom starting a t  the hot boundary x1 of the reaction 
zone moves toward 5% by diffusion and is driven back by mass flow. Now if the 
atom has moved by mass flow and diffusion from x1 to xz, a distance 6,, in a time 
t,, and at  that time has reached its limit of diffusion so that its diffusion velocity 
is V ,  = urn, the total distance traversed by diffusion is 26,. This is seen from the 
following: 

The displacement effected by diffusion is given by the approximate relation 

Do(Trn/ 

d2 = 2Dt (5.3.02) 
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Differentiation with respect to t gives the diffusion velocity, 

v = 1/D/2t (5.3.03) 

and at  the limit point x i ,  

Vi = di@$ = = 6r/tr 

Then 

D = 26,2/t, 

and 

d = 1/2Dt, = 26, 

(5.3.04) 

(5.3.05) 

(5.3.06) 

This hypothesis is supported by experimental facts. The distance travelled 
by diffusion in a time t r  for the mixtures listed above is calculated by equation 
5.3.02. t i  is the time required for the gases to flow a distance 61 a t  a velocity urn. 
The ratio d/61 was formed for each mixture and was found to  be nearly equal to 
3 in all cases. Allowing for the fact that 6, > a l ,  the results support the hypothesis 
that d = 26,. 

Assumption 7: The expression for reaction velocity is a mean value ii defined 
by the equation: 

(5.3.07) 

An expression for flame velocity in terms of the diffusion coefficient may now 

v i  = DCTi/2nrT, (5.3.08) 

be derived by combining equations 5.3.01, 5.3.04, 5.3.05, and 5.3.07 to  give: 

D. The theory of Bartholomi (6, 9, 95) 

As outlined in an earlier section, Bartholom6 has given a thermal theory for 
the flame velocity of fuels burning in air. He found, however, that flame tem- 
perature plays a lesser role in determining uo for the much hotter flames which 
are the result of fuels burning in oxygen or oxygen-rich air. F,or the first group 
vo is 30-70 cm./sec. and T I  is under 2400°K. For the second group the temper- 
ature is not so much greater, 2700°K. and above, but the %ame velocities are 
400-1200 cm./sec., an order of magnitude faster. The final temperatures for the 
second group are high enough so that the burned gases are markedly dissoci- 
ated. If the energy content of the fresh gas is increased, say by increasing the 
oxygen content of the air, the flame velocity shows a marked increase. The 
flame temperature rises very little, a large part of the added energy having gone 
into the dissociation of end products. Thus one can logically seek a dependence 
of vo on the dissociation products. 

Bartholom6, like Tanford and Pease, finds a marked correlation of flame 
velocity with hydrogen-atom concentration and little correlation with concen- 
tration of oxygen atoms or hydroxyl radicals. His hypothesis as to  the reason for 
the influence of hydrogen atoms differs from that of Tanford and Pease. Figure 
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9 is a plot o'f vo versus hydrogen-atom concentration in the burned gases for vari- 
ous fuels. Curve I has points for flames of hydrogen with oxygen, oxygen + ni- 
trogen, and chlorine, as well as the oxyacetylene flame. Curve I1 represents 
points for the hydrocarbon-oxygen flames with the exception of the acetylene 
flame. On the basis of these data the author reaches the following conclusions: 

(1) The flame velocity, for this class of flames, is strongly dependent on the 
hydrogen-atom concentration. The atoms M u s e  against the stream into the 
fresh gas, where they initiate or accelerate the chemical reaction. The influence 
of the atoms is of another order of magnitude than that of temperature in the 

FIG. 9. 00 versus hydrogen-atom concentration in the burned gases for various com- 
bustible mixtures as reported by Bartholorn6 (9). Curve I includes points for hydrogen- 
oxygen, acetylene-oxygen, and hydrogen-chlorine mixtures. Curve I1 includes points for 
ethene-oxygen, methane-oxygen, and propene-oxygen mixtures. 

slower flames. Quantitatively it is found that ug is proportional to [HI", where 
n is smaller than 1 but larger than the value which Tanford and Pease find 
in equation 5.1.08. 

(2 )  The influence of the hydrogen atoms is general in nature, similar for all 
flames and therefore not dependent upon the individual chemical events which 
may characterize a flame. 

(3)  The fact that in figure 9 curve 11, for the hydrocarbons, lies 50 per cent 
lower than curve I cannot be understood in terms of the difference of the d 3 u -  
sion coefficient for hydrogen atoms in the different mixtures. This is all the more 
evident since points for the acetylene flame fall on curve I. The effect is explained 
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by an assumption of repression of hydrogen atoms in the hydrocarbon flames. 
Bartholome? suggests that in the hydrocarbon flames reactions of the type 
H + CH, = Hz + CHp occur, so that the fast-moving hydrogen atoms are 
replaced by the more slowly moving alkyl radicals. Since the value for the acet- 
ylene flame lies on the curve for the hydrogen flame, it must be assumed either 
that the radical C-C-H is not formed, or that it decomposes into Cz and H, 
so that the concentration of hydrogen atoms is not changed. 

Because of the evidence of the general nature of the influence of the hydrogen 
atoms, Bartholome suggests that the influence is by virtue of a physical rather 
than a chemical process. If the atoms recombine after diffusion into the fresh gas, 
they will have carried over from burned to  fresh gas their heat of dissociation. 
This increase of energy transport may explain the order of magnitude of the dif- 
ference in flame velocity between thermal and diffusion flames. 

The fact that the maximum velocity for flames lies not a t  stoichiometric 
quantities of the components, but a t  fuel excess, is explained by a calculation 
of hydrogen-atom concentration a t  various compositions. As the concentration 
of oxygen decreases, the hydrogen-atom concentration rises with increasing fuel 
excess. Ultimately the effect of the decreasing temperature, which decreases 
dissociation, dominates, and [HI again decreases. It is found that a t  the maxi- 
mum of the flame velocity, [HI also is a t  a maximum. 

E. The theory of Manson (86, 87, 88, 89) 

P = Pl/PO, and 
n = number of moles per unit volume. 

In cantrast t o  other theories, Manson does not assume that the pressure 
through the zone is constant. The flame velocity is calculated by obtaining an 
expression for the pressure and substituting it into the equation 

00 = bdpo - Pd/PO(PO - P1)11’2 (5.5.01) 

which is a rearrangement of equation 2.04. The pressure drop is calculated by 
considering that it arises from the movement of high-energy atoms or radicals, 
particularly hydrogen atoms, from the reaction zone into the fresh gas. 

Assumption 1: Hydrogen atoms are formed in the reaction zone, and they 
move toward the cold and hot boundaries with a velocity governed by the tem- 
perature in the reaction zone. 

Assumption 2: The number of atoms crossing per unit area per unit time is 
the same a t  the two boundaries, and they move with the same velocity in each 
direction. Therefore the concentration of the hydrogen atoms is taken to be the 
same near the hot and the cold boundaries. 

14ssumption 3: The concentration of hydrogen atoms at  the hot boundary is 
given by the equilibrium partial pressure of the atoms in the burned gases. Then, 
for ideal gases the partial pressure of the atoms at  the cold boundary becomes 
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Assumption 4: The hydrogen atoms in the fresh gas are assumed to undergo 
recombination according to the equation 2H = H1 + heat. Then the partial 
pressure in the fresh gas due to  the movement of hydrogen atoms from the re- 
action zone is 

( P H % ) O  = %.i(pH)lTO/T1 (5.5.03) 

Assumption 5: It is assumed that the pressure in region 0 surpasses that in 
region 1 by the partial pressure of the hydrogen molecules as given by equation 
5.5.03, that is, 

Ap = Po - pi  = (PH,)o = >d(P~)iTo/Ti (5.5.04) 

TABLE 4 
Comparison of experimentally determined flame velocities for  various mixtures with the oe: - 

locities calculated according to the theory of Manson (87,88) 

Mixture. . . . . . . . . . . . . . . .  
DO, m./sec. 

CzHz + 0 2  1 C ~ H Z  + 5/2 OZ 
Calculated.. . 9.3-9.8 5 . 8 - 6 . 4  ~ 3.8-5.7 
Observed . . . .  3.5-10 1 5.75 0.35-0.45 

TABLE 5 
Comparison of experimentally determined flame velocities for stoichiometric mixtures 
of 1 ,%butadiene with nitrogen air and helium air as observed by Bad in ,  Stuart, and Pease ( 4 )  

with calculated velocities of Manson (89) 

MIXTURE WITE 

Nt . . . . . . . . . . . . . . . . . . . . . . . . . .  

He, . . . . . . . . . . . . . . . . . . . . . . . . .  

TOTAL PRESSURE 

a h .  

1 
0 . 5  
1 
0 .5  

I 00 
- . - 

' Calculated ~ Observed 

cm.lsec. I 

92 1 53 
143 1 246 , 

~ 282 , 179 

I 

Manson uses equations 5.5.01 and 5.5.04 to calculate flame velocities for a 
number of gaseous mixtures (87, 88). Some representative results are shown in 
table 4. When more than one figure for the calculated velocity is given, the values 
represent calculations with different sets of thermodynamic data. More than 
one value for the observed velocity indicates that the velocity was measured by 
more than one observer with different results. 

Manson has also calculated 2ro, at pressures of 1 and 1.5 atm., for mixtures of 
1,3-butadiene with nitrogen air and with helium air (89). Table 3 gives his 
calculated ratios of flame velocities compared with the calculated and experi- 
mental results of Badin, Stuart, and Pease (108). Table 5 shows velocities calcu- 
lated by Manson compared with experimental results. 
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